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PURPOSE

No longer is a single textbook sufficient as a source of teaching material for
high school mathematics classes. Although the majority of the recent
curriculum-revision projects have tended to emphasize primarily the de-
velopment of pure mathematics, there is a growing awareness that students
should also know something about the applications of mathematics. The
National Aeronautics and Space Administration has recognized the appeal
of aerospace activities, and has initiated and supported the development of
curriculum supplements for several high school courses. It is hoped that
they will fill a need felt by many teachers.

Because the present attainments in aerospace would not be possible without
mathematics, it is most appropriate that supplementary publications deal-
ing with space activities be made available to teachers of mathematics. It
is our hope that students will become more interested in mathematics as
the result of seeing some of its significant current space-related applica-
tions. Working problems such as those in this book should enhance both
the mathematical knowledge and skill of the student and his appreciation
and understanding of space technology.

CONTENT AND ORGANIZATION

SPACE MATHEMATICS, A Resource for Teachers consists of a collection
of mathematical problems related to space science. Because the emphasis
is on the mathematics, the problems have been grouped according to mathe-
matical topics. A minimum amount of attention has been given to the
development of theory. In general, the new formulas that are necessary
for understanding the text have been quoted but not derived. In some
cases, as in Chapter 10, formulas have been derived from more basic equa-
tions. The theory that has been presented is explained only to the extent
needed to make the problem understandable. A rigorous discussion of the
principles of astronautics is beyond the scope of this book, and would in fact
be inconsistent with the purpose of the book. It is largely for these reasons
that no calculus problems appear in the text. The development of the
theoretical basis of spaceflight depends heavily upon calculus, but the level
of sophistication :equired is far above the high school level. The reader
who is interested in this type of material will find it in other publications,
several of which are listed in the Bibliography.
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The problems range in difficulty from very easy ninth grade level ones to
very challenging twelfth grade level applications. Within the chapters the
problems are arranged roughly in order of increasing difficulty. Solutions
are provided for all problems. A list of topics in mathematics presented
in the text can be found in the Table of Contents, and the types of problems
in each topic are listed in the introductions to the individual chapters.

The problems were written by various writers. During the process of com-
piling and editing the material, an attempt was made to retain, whenever
possible, the style of the individual writer. Thus styles and arrangement
vary somewhat from problem to problem and from chapter to chapter. Al-
though some sets of problems are sequential, the authors have tried for the
most part to make each problem self-explanatory. The lack of continuity
in content throughout most of the book should not be disturbing. Actually
it enables a teacher to select problems at will without preiiminary study.

NOTATION AND COMPUTATION

For ease of reading, the most conventional notations and language have
been used. The variety of writers, however, introduces certain inconsist-
encies that might bother a reader who is not prepared for them. First,
notation is only locally consistent. In problems dealing with rocket pro-
pulsion, for instance, the letter c is used consistently to denote the exhaust
velocity of a rocket. In other problems, however, such as those concerning
relativity, c is used to denote the speed of light. In both cases, standard
notation is followed. Similarly, e is used to denote both the eccentricity of
a conic section and the base of natural logarithms. As a subscript, it may
refer to Earth (as in rc, the radius of Earth) or escape (as in vc, the
escape velocity) . The reader should be able to interpret such symbols
correctly from context.

Second, the way in which units are handled is not consistent. In many
problems, especially those in the early part of the book, the units are carried
throughout the entire course of a computation. Such a practice should be
encouraged initially, and it can be very helpful when the data involve an
assortment of units. When, however, it is clear what the appropriate units
are, they are often withheld until the final answer.

Third, the matter of accuracy can become a thorny matter. Naturally it is
not intended that the equation 103><VTh = 3,600 be interpreted literally.
The irrational number on the left-hand side cannot possibly be equal to the
integer which stands on the right-hand side. In this case, 3,600 is the
value of 103x-V1.3 rounded in such a way as to be consistent with the accura-
cy of the data given in the statement of the problem. Unfortunately there
are no simple, sure-fire rules for the rounding of answers which is not to
say that correct rounding is unimportant. In careful scientific work, great
attention often must be paid to error analysis. It is usually not enough to
determine a numerical value for a quantity, but one must also determine
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its degree of accuracy. A distance, for instance, might be quoted as 3.71
0.02 centimeters, rather than 3.71 centimeters. The estimation of errors

is frequently a complicated and tedious task. The authors have deliberate-
ly shied away from such tasks, partly to make the computations less bur-
densome, but mainly because such considerations could detract from the
real point of a problem. In summary, some equal signs must be taken with
a grain of salt. Perhaps the only general rule which we can state is that
one should not expect greater accuracy in the answer than he has in the
data.

As those interested in the teaching of mathemat cs, whether they be class-
room teachers, supervisors, curriculum specialists, or textbook writers, may
have noted, this publication is essentially a supplement to the several
courses in mathematics, grades 9 through 14. It is neither a text nor a sylla-
bus ; it is a rich resource of real problems through which it is hoped that
students, because of their interest in aerospace, may be motivated toward
a better understanding of mathematics as well as of the space program in
general.

ACKNOWLEI3GMENTS

The writers are grateful to the many NASA scientists who discussed their
research with them and made helpful suggestions. In particular, S. Walter
Hixon, Jr., former Head of Training and Educational Services, NASA
Langley Research Center, deserves thanks for his cooperation in serving
as host to the writers during various visits to the Center and for introduc-
ing them to scientists there.

The writing staff also appreciates the assistance of Dr. Frederick B. Tuttle,
Director of Educational Programs, Office of Public Affairs, NASA, who
coordinated the project in its final stages, and of George Gardner and
Howard S. Golden, Planning and Media Development Division, Office of
Public Affairs, NASA, who guided the publication through its production.



1211'



zilmEter
CONVERSION FACTORS, NOTATION, AND UNITS
OF MEASUREMENT

The conversion factors presented in this chapter will be new to many teach-
ers of mathematics. As will be apparent from the problems presented,
conversion from one set of units to another is often made easier by the use
of conversion factors. The notation involved in using conversion factors
and in some problems in other parts of the book will be new and perhaps
controversial. The procedure of writing the units into the computation
and then dividing, multiplying, adding, and subtracting units as if they
were numbers is not often used in mathematics.

Some physics and engineering textbooks do use the "factor label" tech-
nique. Sometimes the use of this technique offers the best way for one
to know what units are involVed in the final answer. If the engineer does
not write the units into the equation, he goes through a similar process
mentally or on scratch paper. The evidence is that as the engineer gains
experience in a given field, he finds it less and less necessary to make the
units part of the computation. It should be understood that this labeling
technique is not new, and it has no connection with the space program
itself, except as the individual engineer or scientist finds it useful.

The chapter also introduces a few of the units of measure used in space
technology and incidentally provides some information on temperatures,
distances, velocities, and the like that are characteristic of space explora-
tion.

Measurements expressed in one set of units can be converted to another
set, by using conversion factors. A conversion factor expresses the re-
lationship between two units as a ratio equal to 1. Therefore, multiplica-
tion or division by this factor does not alter the size of the original
expression.

To obtain conversion factors we can begin with an equation which expresses
the relationship between two units. Division of both members of the
equation by either the left or right member results in a conversion factor.
Thus, beginning with

1 yd 3 ft,

we may obtain either
I yd
3 ft A

10
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or

CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMEN T

1 ---
ft

1 yd

Some uses of these conversion factors are shown in the problems.

PROBLEMS

1. When a spacecraft returns from the Moon, lunar gravity will slow it
down until it enters the sphere of Earth's gravitational influence. Then
Earth's gravity will cause it to accelerate until it reaches a speed of nearly
25,000 miles per hour. Convert this speed to feet per second, using the
relationship 60 mi/hr = 88 ft/sec.

Solution. We are given
v 25,000 mi/hr.

Using a conversion factor from the given relationship, we get

SS ft/sec
v = 25,000 mi/hr X 60 mi/hr

2,200,000
60

= 36,700 or 37,000 ft/sec.

2. The speed of light is about 186,300 miles per second.

a. Calculate its speed in miles per hour.

Solution. Using two conversion factors, we ob ain

nai 60 sec 60 min
v = 186,300 X X

sec 1 mM 1 hr

(1.863 X 105)(6.0 X 10)(6.0 X 10) mi/hr

= 6.707 X 108 mi/hr.

b. Calculate the number of miles in 1 light year, the distance light can
travel in 1 year. Use 365 days = 1 year.

Solution. Using two conve sion factors, we obtain

1 light yr
24 hr

6.707 X 108 mi/hr X d-ay- X
65 days

1 yr

= 5.875 X 1012 mi/yr 5.88 X 1012 mi.

13



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT

A typical altitude for manned spacecraft about Earth is 100 miles
because this is the lowest altitude at which air resistance becomes small
enough to make a stable orbit possible. Because the speed in a circular
orbit at this altitude is about 17,500 miles per hour, this speed is sometimes
quoted as a typical one for space travel. How many years would it take
for a spaceship to travel 1 light year if its rate is 17,500 miles per hour ?

Solution. Solving the distance-time-rate equation, d = vt, for t, we obtain

I -v

5.88 X 1012mi 3.36 = 108 hr.
1.75 X 104 mi hr

Converting 3.36 x 108 hours to years yields

3.36 X 108 hr = 3.36 X 108 hr
1 day
24 hr

1 yr
= 3.36 X 108 br X 8,760 hr

3.84 X 1W yr

= 38,400 yr,

1 yr
365 days

4. If a spacecraft were to escape from our solar system, it would need, if
departing at a distance equal to Earth's distance from the Sun, a speed of
94,200 miles per hour or more. Because Earth is moving about the Sun at
the rate of 66,600 miles per hour, the spacecraft could be given the required
speed if launched from Earth in the direction of the Earth's motion about
the Sun with a speed of 27,600 miles per hour relative to Earth. Suppose
that a spacecraft of sufficient size can be given this initial speed, and that
in addition a source of propulsion on board will enable it to maintain
94,200 miles per hour as an average speed. How long would it take the
spacecraft to reach the nearest star, Alpha Centauri, which is 4.3 light
years away?

NOTE: Average speeds have little meaning in the operation of spacecraft.
Speed is constantly changing as a result of propulsion and gravity forces.
Only if a spacecraft were located out in space, far from any significant
gravity field, could it coast with a nearly constant speed.

Solution.
_

4.3 X 5.88 X 10,2 mi
94,200 mi/hr

25.28 X 10,2 hr
9.42 X 104

= 2.68 X 108 hr.

14



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT

Converting 2.68 x1Os hours to years yields, using the computation from the
previous problem,

1 yr
2.68 X 108 hr = 2.68 x 1W hr :K 8,760 hr

= 3.06 X 1W yr

= 3.1 X 104 yr.

NOTE : In this problem, the value 4.3 for the number of light years has
only two significant digits. Therefore, for consistency in our computation,
we must round the final answer to two significant digits.

5. The average radii of Earth and the Moon are approximately 6,371 and
1,738 kilometers, respectively.

a. What is the ratio of the volume of Earth to the volume of the Moon ?

Solution. Using the formula for the volume of a sphere, V = 4 r241, we get
3

4r(6,371 km)3
Vc 3 6,3713

4 3

-71-
1,738

(1,73S km)3
3

Thus the volume of Earth is 49.3 times as large as the volume of the Moon.

b. If the volume of Earth is 1.082 x 102' cubic meters, what is the volume
of the Moon?

Solution. Because the volume of Earth is 49.3 times as large as that of the
Moon, the volume of the Moon is

1.082 X 10" ro,
49.3

- 2.19 X 1019 in3.

6. The temperature on the surface of the Moon is thought to vary from a
low of 1200 K to a high of 383° K. (The Kelvin temperature scale has the
same size degree as the Celsius, or centigrade, scale but is measured from
ab..3lute zero as the starting point. Students who are not acquainted with
the different temperature scales may get information by reading appro-
priate reference books.) What are the extremes of temperature on the
Moon, expressed in degrees Celsius and Fahrenheit?

Solution. Changing 120° K to degrees Celsius, we find

120' 273° = -153'.

Thus the Celsius temperature is -153° C. Converting this temperature

13 15



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT

to degrees Fahrenheit, we have

180 F),
153°(° k100° C

n L) + 32° F = 243° F.

Changing 383° K to degrees Celsius we find

383' 273° = 110°.

Thus the Celsius temperature is 110° C. Converting this temperature to
degrees Fahrenheit, we have

(180° ° F)(110° C) ± 32° F = 230° F.100 C

Hence the temperature on the Moon varies from 153' to 110° C or from
243° to 230° F.

7. The temperature of liquid hydrogen, the propellant used in the second
and third stages of the Saturn V launch vehicle, is about 253° C. What
would this temperature read on the Fahrenheit scale ?

Solution. Converting 253° C to degrees Fahrenheit, we find

(180° ° F)( 253° C) 32° F 423° F.100 C

8. The temperature of the surface of the Sun has been computed to be
5,800° K. What temperature is this on the Celsius and Fahrenheit scales ?

Solution. Changing 5,800° K to degrees Celsius, we get

5,800° 273* = 5,527*.

Thus the Celsius temperature is 5,527° C. Converting 5,527° C to degrees
Fahrenheit, we have

(1_0° F)
\.100u C 27° C) 32° F = 9,981° F.

9. Sounding rockets have reported the lowest temperature ever measured
for Earth's atmosphere. U.S.-Swedish cooperative sounding rocket studies
conducted from Swedish Lapland found temperatures as low as 225° F in
the upper atmosphere. What is this temperature in degrees Celsius?

16



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT

Solution. Using the conversion factor for changing Fahrenheit to Celsius,
we get

(-225° F -32° F)(100a
180° F/ 257)(0° C

= 143° C.

10. The astronomical unit (AU) is the average distance of Earth from the
Sun. One AU equals approximately 92,960,000 miles. How many astro-
nomical units are there in a light year ?

Solution. Using the conversion factor derived in problem 2b, we find

5.88 X 10" mi 5.88 X 1012 mi X

= 6.33 X 104 AU.

AU
.2OGX 107 mi

11. The parsec is a unit of distance used to measure the great distances to
stars. Two observations of a distant star with respect to a fixed, more
distant star field are made at 6-month intervals (see figure) when Earth
is on opposite sides of its orbit around the Sun. The distance between the
observation points E, and E2 is 2 AU. The star in question is 1 parsec
distant from Earth if the parallax angle, one-half the angle subtending an
arc of 2 AU, is 1 second. The arc length and the chord of the arc are
close to being equal, and are considered to be the same. This is why the
parallax angle is the angle Sun-star-Earth at E2. The farther away the
star is from Earth, the smaller the parallax angle will be.

How many astronomical units are there in 1 parsec . Use the approxima-
tion 3.14159 for 7r.

5
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CHAPTER 1 CONVERSI N, NOTATION, AND UNITS OF MEASUREMENT

Solution. In a complete circle, there are 2r radians, which equal 360 x 60
X 60 seconds. Thus, if the parallax angle 9 equals 1 second, then,

2-77- 1rradian 648,000 radian'0 360 X 60 X 60

s 1 AUr
0 7r/648,000

648,000 AU

= 206,265 AU.

In actual use the length of a parsec is often rounded to 206,300 AU.

12. How many light years are there in a parsec ?

Solution. By the preceding two problems, there are 206,300 AU in 1 parsec,
and 63,300 AU in 1 light year. Therefore,

206,3001 par
63,300

light yr

= 3.26 light yr.

13. Among the planets of the solar system, Pluto is the most distant from
the Sun. Its maximum distance from the Sun is about 4.60 billion miles.

a. How long does it take the light of the Sun to reach Pluto at this distance?

Solution. Using the distance-rate-time equation, we have

4.60 X 109 mi
1,863 X 105rn

= 2.47 X 104 see

= 6 hr 52 min.

b. What is the maximum distance from the Sun to Pluto in terms of astro-
nornical units ? Use the conversion factors previously derived.

Solution.
4.60 X 109 mi = 4.60 X 109 mi X 1 ATJ

9.296 X 107 mi
-= 49.5 AU.

c. Find the distance in terms of light years.

18 J., 16



CHAPTER 1 CoNvERsION, NOTATION, AND UNITS OF MEASUREMENT

Solution.
1 light yr

4.00 X 10° mi = 4 X 10 mi X 5.88 X 10'2mi

0.782 X 103 light yr

0.000782 light yr (less than 1 )
1000

14. The chances of penetration of space vehicles by meteoroids has recently
been shown to be several thousand times lower than estimated several years
ago. Except for travel in the asteroid belt, it would appear that the
meteoroid problem would rank low as a criterion in the selection of space-
cabin materials. A recent estimate is that the shortest average interval
of time between perforations of an aluminum skin 10-1 centimeter thick is
1.0 x 108 seconds. Compute the number of years between perforations.

Solution. Converting 1.0 X 108 seconds to years, we have

1 min 1 hr 1 day
1. 0 X 108 sec = 1.0 X 108 see X X X

GO sec 60 min 24 hr 365 days
1.0 X 108 sec

3.15 X 10' sec/yr

3.17 or 3.2 yr,

NOTE: This estimate is pessimistic because it gives the minimum number
of years expected between perforations. A more optimistic estimate is one
perforation every 100 years.

17
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ELEMENTARY ALGEBRA

This chapter contains problems which in general require only algebra, and
is limited largely to equations of the first degree. Algebraic problems of a
more advanced nature are provided in Chapter 3, -Ratio, Proportion, and
Variation," and Chapter 4, "Quadratic Equations." In other chapters,
algebra is used to solve problems involving probability, exponential and
logarithmic functions, geometry, and trigonometry.

The chapter presents problems related to radio transmission, Mach number,
launch and reentry velocities and accelerations, pumping rate of an astro-
naut's heart during launch, barycenter, periods of certain planets, and
sidereal and synodic period of a satellite.

These problems are designed to demonstrate that even very elementary
algebraic formulas are useful in the space and technological age.

PROBLEMS

1. A radar transmits pulses of electromagnetic waves, which travel at the
speed of light, approximately 186,300 miles per second. Directional an-
tennas radiate the energy in narrow beams. If the radiated waves strike
an object such as a plane, ship, or rocket, some of the energy may be re-
flected back to the radar. The indicator on the radar usually is calibrated
to convert the time between transmission and reception into units of dis-
tance.

Given that t is the length of time for a pulse of energy to be both trans-
mitted by and reflected back to the radar, c is the speed of light, and d is the
distance between the radar and the object, devise a formula for the dis-
tance d.

Reflected wave

CO
Radar

Transmitted wave

Aw Radar target

Solution. The total time of travel for the pulse will be the time it takes

22
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CHAPTER 2 ELEMENTARY ALGEBRA

to get to the target plus the time it takes to rebound to the radar station ;
that is,

t = ti + 12.

Because t1 and to are equal, -e can say

1
ti

2

By the distance-rate-time equation, we have

Hence the required formula is

d 1
11 =

c 2

2. In 0.01 second after transmission, a Texas radar station receives a reflec-
tion from a Saturn rocket.

a. How many seconds did it take for the pulse to reach the rocket ?

Solution. Since the pulse must travel a certain time before hitting the
rocket and then must return along the same path in the same amount of
time, it must take half the total time for the pulse to reach the rocket, or

12 (0.01 see) = 0.005 see.

b. How far away is the rocket from the radar station?

Solution. Substituting the time calculated in part a and the speed of
light into the distance-rate-time equation, we have

d = ct
(186,300 i ec)(0.005 sec

= 932 mi.

3. A 10- by 10-foot-square supersonic wind tunnel is operated at Mach 3_
Find the volume of airflow per second through the wind tunnel-

NoTE : The speed of sound is dependent up' n temperature. In the wind
tunnel where the temperature is approximately 212° F, the speed of sound
is 1,200 feet per second.

Solution. Under the given conditions, the speed of sound, Mach 1, is 1,200
feet per second ; therefore

Mach 3 = 3,600 ft/see.

23



CHAPTER 2 ELEMENTARY ALGEBRA

The cross-sectional area of the wind tunnel is 10 by 10 feet or 100 square
feet, and the volume of airflow per second is

Volume/see = (distance air travels/sec) (cross-sectional arca)

(3,600 ft/sce) (100 ft')

= 360,000 ft3/sec

3.6 X 105 ft3/sec.

4. A meteorite crashed to Earth in Siberia on February 12, 1947. It was
found to contain a number of elements. There were 70 pounds of iron, 20
pounds of calcium, and 30 pounds of unknown material. What was the
percentage by weight of unknown material ?

Solution. In calculating the total weight of the meteorite, we get

70 lb iron
20 lb calcium
30 lb unknown

120 lb total

To obtain the percentage by weight of the unknown material, the fraction
30 lb 100

120 lb 100'is multiplied by which gives the following result

30 lb 100 1/4 X 100
X 25 percent of unknown material.

120 lb 1 100

5. A two-stage rocket is fired vertically and has a speed vo when the second-
stage motor ignites, providing an average acceleration a. Two seconds
after the second-stage ignition, the speed of the rocket is 1,700 feet per
second, and after 5 seconds it is 2,900 feet per second. (Note that we are
concerned only with the time that elapses after second-stage ignition.)
Find a and vo, given that the final speed is equal to the initial speed plus the
product of acceleration and time.

Solution. Applying the given equation yields

2,900 = vo + a (5)
and

1,700 = vo ± a (2).
Subtracting yields

1,200 = a (5 2)

a = 400 ft/sec2.

Substituting this value of a into either of the preceding equations yields
900 feet per second.

NOTE : See the comment in Chapter 1, problem 4, regarding the use of
averages.

21
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CHAPTER 2 ELEMENTARY ALGEBRA

6. A scientific capsule was carried aloft and released at the peak of the
trajectory by a rocket that had an average vertical speed of 570 miles per
hour. The capsule made a controlled descent with an average vertical
speed of 240 miles per hour and landed 67.5 minutes after the rocket was
launched. Find the maximum height reached by the rocket.

Solution. First the time of ascent in hours t is found by equating expres-
sions for the distance of ascent and descent:

5701 =

=

240

270

67.5
t

60

240t

Thus the rocket reached the peak of its trajectory 1/3 hour after launch.
The maximum height reached is equal to the product of the speed and time ;
i.e., (570 miles per hour) (1/3 hour) or 190 miles.

7. During a spacecraft launching, an astronaut's heart pumps blood at a
rate of 10 pints per minute greater than when he is sitting in normal con-
ditions. Under launching conditions his blood makes two times as many
complete circulations in 8 minutes as when normally sitting. The astro-
naut's body contains 10 pints of blood. Find the rate his heart pumps dur-
ing launching.

Solution. Letting L = rate during launch and S = rate at normal sitting,
we have

S (1/2)L
and = S tO

(1/2)L -I- 10

20.

The rate during launch is then 20 pints per minute.

8. The planets Earth, Jupiter, Saturn, and Uranus revolve around the Sun
approximately once each 1, 12, 30, and 84 years, respectively.

a. How often will Jupiter and Saturn appear in the same direction in the
night sky, as seen from Earth ?

Solution. Let J and S represent the periods of revolution of Jupiter and
Saturn, respectively. In 1 Earth year, Jupiter revolves (1/12)J and Saturn
revolves (1/30)S. Equating these times yields (1/12)J (1/30)2, or
5J = 2S. Hence Jupiter makes five revolutions, while Saturn completes
two revolutions. Thus the planets will appear in the same direction, as
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seen from Earth in the night sky, once every 5 (12 years ) =, 2 (30 years)
60 years.

Alternate solution. It is clear that the time required is a multiple of 30
years because the period of revolution of Saturn is 30 years. Hence, the
result is the least common multiple of the two periods, which is 60 years.

b. About how often will the planets Jupiter, Saturn, and Uranus all appear
in the same direction in the night sky as seen from Earth?

Solution. Utilizing the method of part a, we have

(1/12)J (1/30)8 = (1/84)U,
or

35J = 14S = 5U.

Substituting for J,S, and U, we have

35(12 yr) = 14(30 yr) = 5(84 yr) 420 yr.

Alternate solution. The least common multiple of 12, 30, and 84 years is
420 years. Thus the three planets will appear as described once every 420
years.

9. The huge 10-story-high Echo satellite was designed to reflect radio
waves back to Earth. To be a good reflector, the spherical satellite required
a diameter that was at least as large as the wavelength A of the wave
reflected, that is

Determine the minimum diameter D in meters needed for the satellite to
be a good reflector of waves with frequency of 107 hertz. (The hertz is
the new unit recently adopted for indicating the frequency in cycles per
second. One hertz is 1 cycle per second.) The length of a wave is the
distance traveled by a series of waves during a given time divided by the
frequency or number of waves propagated during that time. That is,

where c is the speed of light, 3 X 108 meters per second, and f is the f
quency. Also find the surface area and volume of the Echo satellite.

Solution. The wavelength is

x =
3 X 108 rn s__

107 Hz
30 m.
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Substituting this value into the diameter rela ion gives

30 In
> 1

D > 30 rn.

Hence the Echo satellite must be at least 30 meters in diameter. Assuming
this value to be the approximate diameter, the surface area is

The volume is

S = 471-7'2

4r(15

= 2,828 or 2,800 m2.

_ .
V -3/1-1 3

4= .7r(15 m)3

14,137 or 14,000 m3.

10. The moment of a mass is the product of the mass and the distance of
the mass from the center of rotation. The point at which the sum of the
moments is zero is called the center of mass. This point is usually called
the barycenter. An example is the fulcrum at which a teeter-totter is
balanced.

a. Determine the center of mass of two equal point mass

Solution. Let mass m be located the distance a from the center of mass,
while another equal mass rn is located at distance b from the center of mass,
as indicated in the drawing.

A

Then, if the moments are in balance,

ma mb
a b

Hence the center of mass, or barycenter, is midway between two equal
masses.

b. If M is the mass of Earth, the mass of the Moon is about M/81. The
distance between the centers of Earth and the Moon is about 239,000
miles. Find the location of the barycenter of the Earth-Moon system.

211 97
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Solution. Let x be the number of miles between the barycenter and the
center of Earth. Then

Mx -= (239,000 M
81

81x = 239,000 x

239,000
x 82

= 2,915 or 27900 mi.

Thus the barycenter is below the surface of Earth,. about 2,900 miles from
its center.

c. During the rotation of Earth about the Sun, the Earth-Moon barycenter
follows a path about the Earth-Moon-Sun barycenter. The Sun is about
332,500 times more massive than Earth. The distance between the center
of the Sun and the Earth-Moon barycenter is about 93 million miles. Find
the location of the Earth-Moon-Sun barycenter.

Solution. Let M' be the mass of the Earth-Moon system. By simple arith-
metic, M (81/82)M', then the mass of the Sun will be

332,500 X 81 X M'332,500M 328,4502W'.
82

If x is the number of miles between the center of the Sun and the Earth-
Moon barycenter,

(328,450M')x M' (93,000,000 x)
328,450x 93,000,000 x

93,000,000
x 328,451

= 283 or 300 mi.

Thus the barycenter of the Earth-Moon-Sun system is inside the Sun about
300 miles from its center. (This solution assumes that the mass of each
body is concentrated at its center. Thus the figure is not precise, and gives
us only a rough idea of the location of the barycenter.)

11. The time required for an orbiting satellite to make one complete revo-
lution of Earth is called its period. The length of the period depends upon
the location of the observer making the measurement.

Suppose the observer is located far out in space and views the satellite
against the background of fixed stars. The period measured in this manner
is called the sidereal period of revolution or -the period in relation to the
stars." Note that the rotation a Earth does not affect the sidereal period.

Now suppose the observer is on Earth standing on the Equator. A satel-
lite in low Earth orbit moving directly eastward is overhead. When the
satellite has made one complete transit of its orbit, it will be behind the
observer because the rotation of Earth will have carried him a distance
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eastward. The satellite must travel an additional distance to again be
directly over the head of the observer. The observer measures the period
of the satellite as the time elapsing between successive passes directly over-
head. This is referred to as the synodic period of revolution or "the period
between successive conjunctions." The synodic period takes into account
the rotation of Earth. It is greater than the sidereal period if the satellite
travels in an easterly direction.

The Gemini 7 spacecraft with astronauts Borman and Lovell aboard com-
pleted 206 synodic periods with respect to Cape Kennedy and 220 sidereal
periods with respect to a fixed point in space during its 14-day mission.

The sidereal period in seconds can be computed by the formula P =
ce/GM where a is the average radius of orbit measured in miles from

the center of the body about which the satellite is in orbit. (The derivation
of this formula is given in Chapter 10.) G is the constant of universal grav-
itation and M is the mass of the body about which the satellite orbits. The
average radius of Earth is 3,960 miles, and for the Moon it is 1,080 miles.
When the units of measurement are miles and seconds, the product GM is
9.56 X 101 for Earth and 1,176 for the Moon.

Usually spacecraft orbit in the same easterly direction as Earth's rotation
and are said to be in a posigrade orbit. All U.S. manned spacefiights have
been launched in posigrade orbits to take advantage of the additional veloc-
ity imparted to the spacecraft by Earth's rotation.

If the direction of orbiting is westerly, or opposite to Earth's rotation, the
orbit is said to be retrograde. In this case an Earth observer would meet
the satellite before it made one complete revolution around Earth. Accord-
ingly, the synodic period would be less than the sidereal period.

a. Find the sidereal period of a satellite with an average altitude above
Earth of 100 miles.

Solution. The radius of orbit is equal to the radius of Earth plus the aver-
age altitude of the satellite, or

a = 3,960 mi -I- 100 mi
4,060 mi.

Hence the sidereal period in seconds is

P - 2(3.14

= (6.28)(4,060)

= (25,500)(10-2)A/425
= 5,258.

Thus the sidereal period is 5,258 seconds = 87.6 minutes 1.46 hours.
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b. Find the sidereal period of Lunar Orbiter 3, which traveled an orbit of
89 by 196 miles above the Moon's surface.

Solution. The average radius of the orbit is the average radius of the Moon
plus the average altitude of the satellite, or

1= 1,080 mi ± -2(69 ± 196) mi

- 1,223 mi.

Therefore the sidereal period is

= 7,680N/1..040

= 7,834.

Thus the sidereal period is 7,834 seconds = 131 minutes = 2 hours 11
minutes.

12. For the satellite in problem 11a :

a. Compute the synodic period of the satellite, assuming it Is in a posigrade
equatorial orbit.

Solution. Let x be a position on the Equator at which the satellite is
directly over the observer. During one synodic period the rotation of Earth
carries the observer to position y, where the satellite "overtakes" him again.
The basic problem is to find the angular distance A.

In one synodic period the observer traveled an angular distance A, and the
satellite traveled an angular distance 360° -I- A. The observer travels 360'
in 24 hours, or 1° in 24/360 hours. Thus, during one synodic period the
observer travels (24/360) A hours.
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From problem lla the sidereal period is 1.46 hours. Thus the satellite
travels 1° in 1.46/360 hours. During one synodic period the satellite travels
(1.46/360) (360 + A ) hours. The synodic period for the satellite and ob-
server are, of course, equal. Therefore, we have

(1.46 hr)(360° + A) (24 hr)A
360e 360'
(L46) (360' ± A) 24A

525.6' + 1.46A = 24A

22.54A = 525.6°

A = 23.3'.
Hence, the synodic period is

(1.46 hr
360° 360° ± 23.30) --- 1.555 hr

= 93.3 min.

Note that the synodic period is 5.7 minutes greater than the sidereal period.

b. Compute the synodic period of the satellite, assuming it is in a retro-
grade equatorial orbit.

Solution. The observer would travel an angular distance A, but the sa el-
lite would travel only 360° A during the synodic period. By using the
same approach as in part a and equating times, we have

(1.46 h
\

A

(24 hr)A.
360° 360°

20.6°.

Therefore, the synodic period is

(1.46 hr
360' ) (360° 20.6') ----- 1.376 hr

---- 82.6 min.

Note that the posigrade synodic period is 10.7 minutes greater than the
retrograde synodic period.
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ch War 3
RATIO, PROPORTION, AND VARIATION

This chapter contains problems in algebra that illustrate the concepts of
ratio, proportion, and variation. Although some of these problems could
be presented in another context and be solved by other means, placing them
in this chapter provides a selected list of problems illustrating these con-
cepts. In a number of instances, these problems are related to and augment
problems in other chapters. When this situation arises, cross-references
are used.

The rich variety of space-related topics discussed in the chapter includes
thrust-to-weight ratio, mass ratio, specific impulse and exhaust velocity,
derivation of Newton's law of universal gravitation, problems involving
force and acceleration of gravity on the Moon and on an asteroid, "g forces"
on an astronaut, artificial gravity, a number of interesting consequences of
Einstein's theory of relativity, variation of weight with distance from the
center of gravity, strength of a reflected radio signal, temperature equi-
librium of a satellite, and the roles of the Sun and Moon in producing tides
on Earth.

PROBLEMS

I. A fundamental concept in the design and operation of launch vehicles
is the thrust-to-weight ratio. Because most launches begin vertically, it is
apparent that the thrust, the force that lifts the vehicle, must be greater
than the weight. That is, the thrust-to-weight ratio must be greater than
1. (According to Newton's second law of motion, F = ma., the thrusting
force F will give the vehicle an acceleration. The thrust remains constant
or tends to increase a little as the propellant is burned. Meanwhile, the
mass in is rapidly reduced as the propellant is burned. The result is an
increasing acceleration. From this acceleration must be subtracted, of
course, the acceleration of gravity, which acts as a retarding force. For
additional information about launch vehicle behavior, see Chapter 6.)

Find the thrust-to-weight ratio of the following launch vehicles.

Vehicle Thrust Weight
Delta 170,000 114,200
Atlas-Centaur 368,000 300,000
Gemini-Titan II 430,000 300,000
Saturn IB 1,600,000 1,294,000
Saturn V 7,700,000 6,400,000
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Solution. The answers, found by simple division, are respective y L49,
1.23, 1.43, 1.24, and 1.20.

takeoff weight
2. The mass ratio of a launch vehicle is defined as R = -burnout weight
The weight of a rocket or launch vehicle can be divided into three parts :
the weight of the structure S; the weight of the propellant or fuel P ; and
the weight of the payload P. The part of the weight that disappears be-
tween liftoff and burnout is F. Burnout occurs, of course, when all the fuel
has been burned. Thus the mass ratio is usually defined as

(Further information about the relationship of the mass ratio to launch
vehicle operation will be found in Chapter 6.)

If the mass ratio of a launch vehicle is 7, the weight of the structure is 2
tons, and the weight of the payload is 1 ton, find the weight of the fuel.

Solution. Applying the given equation yields

S F P
R P

2 tons F ± iton
7 2 tons ± 1 ton
P = 18 tons.

3. The Mach number M is a measure of speed and is defined as the ratio of
the vehicle's speed v to the speed of sound at that altitude va. (The Mach
number varies with temperature, and the temperature varies with alti-
tude.) What is the Mach number of an aircraft flying at 845 feet per
second at an altitude of 30,000 feet? Assume that the speed of sound at
this altitude is 995 feet per second.)

Solution. By definition,

v.

845 ft/sec
995 ft/sec

----- 0.85.

4. The specific impulse 1., of a propellant-engine combination is the thrust
produced when 1 pound of propellant is burned in 1 second. That is, .i

, where F is the thrust or force measured in pounds, w is the weight in
wit
pounds of the propellant burned, and t is the time in seconds. Rearranging

Ftthe equation to read ./p = , we note that the numerator is expressed in
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pounds of force and seconds of time, whereas the denominator is expressed
in pounds of weight. It is common practice to divide out the pounds, 'env-

y)ing the answer in seconds. Finally the ratio which represents poundst '
of propellant used per second and is called the weight flowrate, is commonly
written as fv, leaving us with the equation

FLip

a. Find the specific impulse of a propellant when the burning of 1 pound
per second produces a thrust of 400 pounds.

Solution. Evidently zb = 1 pound per second, and

400
400 sec.

1

b. When 4,735,000 pounds of propellant are burned in 161 seconds, the
thrust produced at sea level is 7,700,000 pounds. Find the specific impulse
at sea level.

Solution.
4,735 000

w ' 29,410 lb/scc
161

7 700 000Lp - - 262 sec.29,410

(These data represent the performance of the Saturn V launch vehicle at
sea level. Although zb remains essentially constant, the thrust F increases
with altitude ; as a result the specific impulse at burnout of the S-IC stage is
higher.)

c. If a propellant can be found that delivers 50 percent more thrust with
the same weight flowrate, how does this affect the specific impulse?

Solution. If the weight flowrate is constant, the specific impulse is directly
proportional to the thrust. In this case, therefore, the specific impulse would
be 50 percent higher than for the first propellant.

5. The exhaust velocity c produced by a rocket engine is directly propor-
tional to the specific impulse of the fuel ; that is, c = gI, where g is the
acceleration of gravity at the surface of Earth. We may derive the formula
as follows. In the equation F = ma, m _ w, obtaining F =1--f a. This
form of the equation merely enables us to work with units of weight rather
than mass. Acceleration is change in velocity per unit of time, or a =



Thus
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Ft

But as noted in the previous problem,

which yields

Ft
181, =

0

c = g

(The relationship of exhaust velocity to iaunch vehicle operation is dis-
cussed in Chapter 6.)

a. What exhaust velocity will be produced by a propellant with a specific
impulse of 360 seconds ?

Solutton. The value of g is 32.2 feet per second per second.

32.2 ft X 360 seesec/sec

11,592 ft/sec.

b. If an exhaust velocity of 14,000 feet per second is needed what must be
the specific impulse of the fuel ?

Solution.
c 14,000 ft
g 32.2 ft/se 435

(The maximum specific impulse available from present chemical propellants
is 450 to 460 seconds.)

6. The statement has been made that Newton's derivation of his inverse-
square law of gravity from Kepler's third law is among the most important
calculations ever performed in the history of science. Kepler's third law,
based upon observation rather than theory, states that the squares of the
periods of any two planets are to each other as the cubes of their average
distances from the Sun. Derive Newton's law from Kepler's law.

Solution. If we represent the periods of any two planets by t and T and
their distances from the Sun by r and R, respectively, then

T2 R3
/2 ?-3
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or
t2R 3T2 =

r3

Assuming that we know the values of t and r, and subs uting for them a
constant C, the equation can be reduced to

T2 = CR3.

Thus if we know either T or R for the second planet, we can solve for the
unknown quantity. In this problem, however, we wish to use this equation
to discover a new relationship, Newton's law of gravitation. For a body
moving in a circular path, the acceleration toward the center

Substituting in F ma,

7)2a .

The velocity of the body in the circular orbit is

Thus,

V
27rr
T

MV2 M47F 2R 2

r RT2

Because T2 = CR3, we find 7 substitution in the previous equation that

m47r 2 1 KF =- X
C R2 R2

That is, the force holding a planet in orbit falls off as the square of the dis-
tance R to the Sun. Newton expressed the value of K and obtained his
law of universal gravitation

0111mF

This law applies not only to the attraction between a planet and the Sun,
but to the attraction between any two bodies. G is the constant of universal
gravitation, M and m are the masses of the two bodies, and r is the distance
between their centers of mass.

7. If M is the mass of Earth, then the mass of the Moon is 0.012M. The
radii of Earth and the Moon are 3,960 and 1,080 miles, respectively. Use
these facts with Newton's law of universal gravitation to find the ratio of
surface gravity on the Moon to surface gravity on Earth.
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Solution. If we place a mass m at the surface of Earth, then the gravi
tional attraction between the mass and Earth is

Glinz
3,9601

Similarly, the attraction between the Moon and an equal mass m placed on
its surface is

G(0.0123f)m,F .
1,0802

The ratio o to F is

Fm 0.012 3,9602 188,179
F 1,0802 1,166,400

1

6

That is, gravity at the surface of the Moon is 1 6 as great as gravity at the
surface of Earth.

8. Several scientists have suggested that manned landings eventually be
made on asteroids. With the equations that we now have available we
can investigate many phenomena related to landing on and exploring an
asteroid. Asteroids exist in many shapes and sizes, with diameters rang-
ing from less than 1 mile to several hundred miles. It has been estimated
that the density of asteroids is about three-fifths that of Earth. In the
following problems we consider an asteroid with a diameter of 14 miles.
We assume that it is spherical. Let us name it A-14. (1-14 has about
the same diameter as Eros, but its mass is greater because Eros is believed
to be brick shaped rather than spherical.) Find the ratio of the surface
gravity on A-14 to the surface gravity on Earth.

14
Solution. Because A-14 is spherical, we know that its volume is 7,920
times the volume of Earth. Then if M is the mass of Earth, the mass of
A-14 is

(
7,920

14 = 3,314 X 10-'2 M.
5

Expressing the force of gravity at the surface of each body,

and

0111mFe - 3,9602

FA =
G(3 314 X 10-12) liz

72

39



CHAPTER 3 RATIO, PROPORTION, AND VARIATION

Therefore
FA 3,314 X 10-12 X 3,9602

49

106 X 10-5

0.00106.

Thus a person on A-14 would weigh just a trifle more than one-thousandth
his weight on Earth.

9. If a man weighs 180 pounds on Earth, what would he weigh on the Moon
and on A-14 ?

Solution. Weight on the Moon would be
1

6-
X 180 lb --- 30 lb.

Weight on A-14 would be
0.00106 X 180 lb - 0.191 lb,

or just over 3 ouncs.

10. Compute the acceleration of gravity at the surfaces of the Moon and
A-14.

Solution. The equation F = ma tells us that the acceleration is directly
proportional to the force that produces it. The force that causes a body to
fall is its weight. The acceleration of a freely falling body near the surface
of Earth is 32.2 feet per second per second. In the case of the Moon, the
weight is 1/6 of Earth weight, and therefore the acceleration near the sur-
face is

1 X 32.2 5.4 ftisec2.
6

Similarly for A-14, the acceleration near the surface is
0.00106 X 32.2 - 0.034 ftisee2.

11. Galileo found that when a body falls from rest, the distance s traveled
is directly proportional to the square of the time t of travel, or

a = k12.

E7:periment shows that k = -1 a, where a is the local acceleration caused by2
gravity. Thus we obtain the familiar equation found in physics

Find the distance that a body will fall in 10 seconds on each of the following
bodies.
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a. Earth.

Solution. Because a = 32.2 ft/sec2,

s X 32.2 X 102
2

= 16.1 X 100

1,610 ft.

b. Moon.

Solution. From problem 10,

A-14.

So ution. From problem 10,

a 5.4 ft/see2,

1= X 5.4 X 102
2

2.7 X 100

270 ft.

a = 0.034 ft/sec2,

1
-§ X 0,034 X 102

0.017 X 100

1.7 ft.

12. Graph the equation s = lhat2 for Earth and the Moon on the same set

axes for t 8 and s < 200.

Solution.
200

180

16

14 s _32,2 t'
2

120

100

80

4

2_

2 3 4 5

t, sec

5.4s t'
2

7
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13. Using the data found in the preceding problem, find the time required
for an object to fall 100 feet on Earth, the Moon, and A-14. (Ignore air
resistance for a body falling to Earth.) By definition, acceleration is
change in velocity per unit of time, or a . From this equation we may
write v at. Use this equation to find the velocity at impact on the same
bodies.

a. Earth.

Solution.

b. Moon.

Solution.

c. A-14.

Solution.

1100 ft = 5 (:32.2 ft/sec°

t2 6.21 se-.2

t 2.49 see.

v (;32.2 ft/sec") .4

= S0.2 ft/sec.

1100 ft = 4 ft/sec-

t' = 37 sec2

6.1 sec.

v = (5.4 ft/see2) (6.1 sec

= 33 ft/sec.

1100 ft = 2 (0.034 ft

1' = 5,882 sec2

76.7 sec = 1.28 min

v = (0.034 ft/see2) (76.7 sec

= 2.6 ft/sec.

,2 2

12)

14. The centripetal acceleration a on a body in circular motion varies di-
rectly as the square of its rotational speed v (feet per second) and inversely
as the radius r (feet). Astronauts are sometimes conditioned and tested in
giant centrifuges that follow this law.

a. Find the acceleration on an astronaut in a centrifuge wIth a diameter of
100 feet and a speed of 80 feet per second.
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Solution. From the given statement we find
v2a

(80 ft/s
50 ft

)2

128 ft/sec2.

b. The acceleration due to gravity g is about 32 feet per second per second.
Find the number of g's on the astronaut in part a.

Solution. Applying the relation lg .=.= 32 ft per second per second gives

128 ft/sec2 = 128 ft/sec2 X 1932 ft/s c2
= 4g.

c. If the astronaut's normal weight is 170 pounds, find the force that the
side of the centrifuge exerts on him.

NOTE: Force is equal to mass times acceleration.

Solution.
F = ma 170 lb

-T a 32 ft/sec-, (128

= 680 lb.

15. It is expected that in some future space stations, artificial gravity will
be created by rotation of all or part of the station. Gas jets or other pro-
pulsion devices can be used to control the rate of rotation of the station.
As in the case of the centrifuge, the rotation will produce a force against
the astronaut that cannot be distinguished from gravity. If r is the dis-
tance of a point in the station from the center of rotation, then the velocity
of the point for N rotations per second is

v = 2-71-7N.
As noted above,

V2a = r" or

Setting the two velocities equal,

271-rN Nfar
aN2 r

(2102

,\15zN
27T- r

If r is given in feet, then a is the acceleration in feet per second per second.
By controlling the values of r and N, any desired artificial gravity can be
produced.
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a. Compute the rotational rate needed if the radius of the station is 100
feet and a gravity equal to one-half the gravity of Earth is desired. (Use
g = 32 feet per second per second.)

Solution.

1 \I 16
27T- 100

1 4 4
X6.283 10 62.83

---, 0.064

The rate of rotation must be 0.064 rotation per second or 60 x 0.064 == 3.8
rotations per minute.

b. Compute the needed rotational rate if the radius of the station is 500
feet and Earth surface gravity is desired.

Solution

1

6.283

= 0.04.

32
500

0 0.253.064
6.283

The rate of rotation must be 0.04 rotation per second or 2.4 rotations per
minute.

16. A jet pilot coming out of a dive flying at 600 feet per second experiences
a centrifugal force of 1,800 pounds. If the centrifugal force F is propor-
tional to the square of the velocity v, find the force on a pilot flying the same
path at 800 feet per second.

Solution. From the given information we have

F2
e°,12 v22

where F1 = 1,800 pounds, v, = 600 feet per second, and v2 = 800 feet per
second. Thus the force on the pilot flying at 800 feet per second is

1,800 lb F2
(600 ft/sec)2 (800 ft/sec

F2 3,200 lb.
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At speeds close to that of light, the theory of relativity plays an impor-
t ,c role. One of the relativistic effects of high speeds is an increase in
mass. If an object has a mass ?no when at rest, then its relativistic mass
my when moving with velocity v is

where c is the velocity of light, approximately 186,300 miles per second.

a. Find the percent increase in mass of a unit particle when its speed is
equal to 60 percent of the speed of light.

Solution. Applying the given equation yields

1

1

V'i 0.36

1= = 1.25.
0.8

The difference between the relativistic mass and rest mass gives the in-
crease in mass, 0.25 or 25 percent.

b. Find the percent change in the mass of an electron when its speed is
equal to SO percent of the speed of light.

Solution. The relativistic mass of the electron is

CL812

mo

12-11) = 1.67mo0.6

Thus the change in mass is 1.67m0 m0 = 0.67m0, or 67 percent increase.

c. Plot a graph of the relativistic mass as a function of the ratio of particle
speed v to the speed of light c. Assume a unit rest mass. How does your
graph indicate that the speed of light is an unreachable speed?
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Solution.

As the speed of the particle approaches the speed of light, the mass becomes
increasingly large without bound, which means that the speed of light is a
limiting speed that can never be achieved.

18. This problem uses an interesting application of a binomial expansion
to investigate the relationship between Newton's and Einstein's formulas
for kinetic energy. The exploration of space outside our solar system will
be feasible only if we can produce spacecraft that will travel nearly as fast
as light. (Even if we could travel at the speed of light, it would require a
little more than 4 years to reach Alpha Centauri, the closest star outside
the solar system.) At speeds close to that of light, the theory of relativity
changes the formula for kinetic energy EK. Whereas in Newtonian me-
chanics we have

the relativistic formula is
EK

1
EK --mov2

2 '

)c2.

At first sight these formulas look quite different. We shall see, however,
that the Newtonian formula can be regarded as an approximation to the
relativistic one.

a. Verify that the binomial expansion of

46
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Solution. Using the binomial expansion for (a ± b)", namely

(a b)" a A-- 2 1
an'b2

a = 1, b = , and n = -1 we find

1
3 1 3 :5

4 xG ±
2 4' 4 6

b. Use the first two terms of the expansion as an approximation to
(1 x")-1/'2 and set x = vjc. Show that the relativistic kinetic energy
formula reduces to the Newtonian one.

Solution. We are given that

Hence

Using 1 ± ,5
V)2

1

Mo \it 2

o i tion to

Mu

111

114

no

we have

nip -1- Mo

2 1

2

43 47



CHAPTER 3 RATIO, PROPORTION, AND VARIATION

(We are using x y to mean x is approximately equal to y.") Thus we
have shown that the relativistic kinetic energy formula reduces approxi-
mately to the Newtonian one when v is small compared with c.

19. According to Einstein's theory of relativity, if one system is moving
rapidly with respect to another system, time passes more slowly in the
moving system. Suppose that an astronaut is in a futuristic spacecraft
that travels at the speed v 0.5c, where c is the speed of light. The astro-
naut has a brother on Earth who was 1 year younger at the time of launch.
The aging rate R. of the astronaut is related to the aging rate Rb of his
brother by the equation

R. RJit (j)2

How long must the astronaut travel so that upon his return to Earth, he is
exactly as old as his brother ?

Solution. From the given equation, we get

R. = Rbji C15 C\
C

Hence, for each year the brother ages, the astronaut ages only years.
Expressed in another way, the astronaut's clock moves more slowly than the
same clock would move on Earth. While the clock advances 1 year on

3Earth, the same clock would advance only years while moving at half
the speed of light. Let x be the time needed. Then

X
2

x_
3 + 1 yr

= (4 -I- 2-13-) yr.

As a check, if when the astronaut leaves Earth, the age of the brother is N,
the age of the astronaut is N +1. When the astronaut returns after
(4 -F 2 3) years of travel, the ages are

Ab N 4 + 2-/ yr.

A. = N + 1 + (4

= N 1 + 2-Vj 3

= N + 4 ± 21/5 yr.

20. Find the general equations required to solve problem 19 if the age of
the brother is N and the astronaut is d years older. Apply the equations
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to the case in which the brother is 20 years old and the astronaut is 5 years
older.

Solution. From problem 19, the number of Earth years needed is

-V3
x -F ci

-- (4 2VT3)(/ yr.

The ages of the brothers are
Ab N + (4 ± 2V5)d

N 4d + 2VT3c1 yr

and
= N d + 3 (4 + 275)d

2

N + 4d + 2-VT3d yr.

Because d 5 and N -= 20,

--- (4 ± 2 5 20 ± 17.3 37.3 yr

and Ab = A. = 20 + 4(5) ±
--- 57.3 yr.

Thus the brothers will be the same age when the astronaut returns after
traveling for 37.3 years at half the speed of light.

21. At what velocity must the astronaut travel in order that he may age
one-third as rapidly as his Earth-bound brother ?

Solution. From the equation in problem 19,

R.
\it

2

1 I, 2=

V2 =
9

v/K 2.83
v -yc = e = 0.94c.

3

Thus the astronaut must travel at 94 perc nt of the speed of light.
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CHAPTER 3 RATIO, PROPORTION, AND VARIATION

22. How would the rates of aging compare if the astronaut were able to
travel at the speed of light?

Solution. When v = c,
_ 1 = 0

which implies that R _ 0. This would mean that those aboard a space-
craft traveling at the speed of light would not age at all.

23. The world's champion weight lifter in 1968 lifted 1,280 pounds. If he
were on the Moon and able to exert the same lifting force, what would be
the Earth weight of the greatest mass that he could lift ?

Solution. As noted in previous problems, a mass on the Moon will weigh
only one-sixth of its weight on Earth because gravity on the Moon is 1/6
that of Earth. The Earth weight that the champion could lift would be
6 X 1,280, or 7,680 pounds.

24. According to Newton's law of universal gravitation, the acceleration
of gravity at a point in space varies inversely with the square of the dis-
tance from the center of gravity of the primary body. Because the weight
of a given mass varies directly with the local acceleration of gravity, as
irdicated in the equation w = mg, the weight of a body in space also varies
in versely with the square of the distance from the center of the primary
body. We can investigate this matter with the following computation.

Let r the distance from the center of gravity; g, = the acceleration of
gravity at distance r; R = the radius of the primary body ; = the accel-
eration of gravity at the surface of the primary body ; wr the weight of a
mass at distance r; and zok = the weight of the mass at the surface of the
primary body. Then,

from which we obtain

At dis anc

At distance R,

Then, by division,
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Because w varies directly as g, we may also derive in a similar manner

The acceleration of gravity at Earth's surface is about 32.2 feet per seco d
per second.

a. Find the acceleration of gravity at an altitude of 100 miles above the
sur face of Earth.

Solution. Because gm 32.2, R _7= 3,960 miles, and r = 4,060 miles, we
obtain

g = (4 060
3,960

,
X 32.2

= (0.975)2 X 32.2

-- 0.95 X 32.2 30.6 ft/sec2.

b_ Find the weight of a 100-pound object at the altitude given in part a.

Solution. Evidently wu = 100 pounds. Using the previous computation,
w,- = 0.95 x 100 lb = 95 lb.

NOTE : This problem should illustrate the fact that although a body in
orbit acts as though it were "weightless," this lack of weight is apparent
rather than real. Under what circumstances would a body be physically
weightless?

25. a. Find the acceleration of gravity at an altitude of 70 miles above the
surface of the Moon.

Solution. In a previous problem we computed that on the Moon gn = 5.4
feet per second per second. Also R = 1,080 miles and r 1,150 miles.

1

1 ,0
18500)2

X 5.4

(0.939)2 X 5.4

= 0.882 X 5.4 4.8 ft/sec2.

b. At the same altitude as part a, find the weight of a mass with an Earth
weight of 120 pounds.

Solution. If the Eaith weight of the mass is 120 pounds,
120

Wiz = 20 lb

= 0.882 X 20 lb = 17.6 lb.

47 51



CHAPTER 3 RATIO, PROPORTION, AND VARIATION

26. Find the frequency of a simple pendulum on the Moon in terms of its
frequency f on Earth if the frequency is given by the equation

where g is the acceleration of gravIty and L is the pendulum's length.

Solution. Because g on the Moon is only 1/6 as great as on Earth, we have

/(1/L6)g

1 g
27r 6L

L 6

27. In a game of skip rope a minimum speed of 60 revolutions per minute
is required to keep the rope rotating. Find the minimum speed for "Moon
children" using an identical rope. Assume that the "centrifugal" force
necessary to keep the rope rotating is proportional to the square of the
speed.

Solthion. Equating the ratios of force F to the square of velocity v for the
rope on Earth and on the Moon yields

Pe Fm
712 14.2

(60 rpm )2 Vm2

V,2 = 600 rpm2
v, 24.5 rpm.

28.The strength of a radio signal is inversely proportional to the square
of the distance from the source of the signal. Consider a radio signal that
is reflected by a spacecraft and picked up by a receiver on the ground.
How does the strength of the signal at the receiving station vary with the
altitude of the satellite?

Solution. Let h be the altitude of the satellite. The intensity of the signal
when it reaches the satellite may be written

a()I-
h2
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where / is the strength of the source and c is a constant. The strength of
the reflected signal when it returns to the Earth's surface can be written

=
h2

kI.

where k is another constant. Hence

ckIo= -h4

Thus the strength of the signal at the receiving station is inversely propor-
tional to the fourth power of the altitude.

29. How does the equilibrium temperature of a satellite vary with its dis-
tance from the Sun? Base your answer upon the following assumptions :
(a) The solar energy received from the Sun is inversely proportional to the
square of the distance from the Sun, (b) the energy radiated by the satellite
is directly proportional to the fourth power of its absolute temperature,
and (c) temperature equilibrium is achieved when the energy received from
the Sun is equal to the energy radiated from the satellite.

Solution. If r denotes the distance from the Sun, then the energy received
from the Sun can be written c/r2, when c is a positive constant. If T de-
notes the absolute temperature of the satellite, then the energy radiated
from the satellite is given by a T4, where a is another positive constant. In
the case of temperature equilibrium we have

crT4.
7-2

Thus T = k/-07, where the constant k is equal to the fourth root of c/a.
Hence the absolute temperature of the satellite is inversely proportional to
the square root of the distance from the Sun.

30. The force of gravitation with which one body attracts another is
inversely proportional to the square of the distance between them. Con-

sequently, the pull of the Moon on the oceans is greater on one side of Earth
than on the other. This gravitational imbalance produces tides. The Sun
affects the tides similarly. Because the Sun exerts an enormously greater
pull on Earth than the Moon, one might think that the Sun would influence

the tides more than the Moon. Just the opposite is true. How can this be?

Solution. Let N be the point on Earth nearest the Moon and let F be the
point on Earth farthest from the Moon. We shall assume that the tide-
raising force of the Moon is in some sense measured by the difference in the
pull of the Moon on unit masses located at N and F. If r is the distance
from the center of the Moon to N and if Dc is the diameter of Earth, then
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GM GMthe forces a 1g at N and F are, respectively, and , M being(r D,) 2
the mass of the Moon and G the universal gravitational constant. The
difference between these two forces is the tide-raising force, which we
shall call F,. Then,

Ft = ±11),)2]

2GMD,(1

Because -Dc is very small, this expression is approximately

17, 2GM

Thus we would expect the tidal effect to be inversely proportional to the
cube of the distance, whereas gravity is inversely proportional to the square
of the distance. Because the distance from Earth to the Sun is enormously
greater than the distance to the Moon, it is not surprising that the Moon
provides the dominant tide-raising force. Local horizontal components of
this force cause the tides to roll in and roll out ; i.e., the horizontal move-
ment of the water.
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QUADRATIC EQUA IONS

Quadratic equations are used in this chapter to analyze in detail the be-
havior of sounding rockets both when launched and when returning to
Earth. The lift generated by a wing is analyzed, and flying and landing
speeds of a jet transport plane are computed_ Other seeond-degree equa-
tions are found in Chapter 3.

PROBLEMS

L The height s of an object t seconds after being given an upward velocity
of v feet per second from an altitude h is given by the formula

s vt 16t2 ± h

Determine when a toy rocket fired with an upward velocity of 80 feet per
second from a 624-foot cliff will be 224 feet below the cliff.

Solution. When the rocket is 224 feet below the cliff it will have an altitude
of 624 224, or 400 feet. Applying the given formula yields

400 = SO/ 16t2 ± 624

0 = 1612 SO/ 224

----- 16(12 5t 14)

16(/ 2)(t 7)

= 2, 7.

The 2 seconds is extraneous ; hence the toy rocket will be 224 feet below
the cliff 7 seconds after firing.

NOTE The solution of 2 seconds can be given a meaning. If another
rocket had been fired from an altitude of 400 feet, 224 feet lower, a firing
2 seconds earlier would have been necessary to make it follow the above
trajectory. That is, it would have been at 400 feet twice, both at the be-
ginning and end of the flight. One can verify that the initial velocity re-
quired in this instance would have been 144 feet per second.
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CHAPTER 4 QUADRATIC EQUATIONS

2. The acceleration of one sounding rocket is two-thirds that of a second
rocket. Both are launched vertically at the same time. After 4 seconds
the second rocket is 96 feet higher than the first. Given that distance

(acceleration) (time) 2 , find the acceleration of both rockets.

Solution. Let s ± 96 and a be the height and acceleration, respectively, of
the higher rocket, while s and (,3) a represent the same quantities for the
other rocket. Substituting into the given formula yields

s 4- 90 2

and

Subtracting equations yields

= a) (4)2.2 .3

Thus the second rocket has an acceleration of 36 feet per second per second,
whereas the first rocket's acceleration is (24 )36 = 24 feet per second per
second.

3. A sounding rocket is thrust vertically upward with an initial velocity
vo. The height h of the rocket at time t is equal to the height it would attain
in the absence of gravity yot minus the free-fall distance due to gravity
02/2. Thus

= v
°

g-122

We are neglecting air resistance and the variation of g with altitude. Show
that the rocket attains a maximum height of v02/2g and that this height is
attained at time vo/g.

Solution. We comple e the square.

h - 21-)1 t
2L g

vo) 2V02

2g

vo2

2g

If tvo/g, then the second term is strictly negative and consequently
h<v02/2g. If, on the other hand, t = vo/g, then h = v02/2g.
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4. Suppose a model rocket weighs one-fourth of a pound ; its engine propels
it vertically to a height of 52 feet and a speed of 120 feet per second at
burnout. If the parachute fails to open, what will be the approximate time
to fall to Earth, according to the following equation for free fall in vacuum.

The free-fall equation is
h(t) ho ± vot

where h (t) is the height at time t, ho and vi, are the height and velocity at
the time selected at t = 0, and g is approximately 32 feet per second per sec
ond. Note that vo should be assigned a positive (negative) value if the
object is moving upward (downward) at t = 0.

Solution. The altitude at time t is h (t) = 52 -I- 120t 16t2 ground is
reached when h (t) = 0. Hence,

or

Thus

0 = 1612 1201 52

0 = 4/2 30/ 13.

30 V-302 ± (16 X 13)
=, 8

Because we reject t < 0, we have

= 1 (30 ± N/900 ± 205)

1= -(30 + -V1,10s)

1-i4(30 + 10 V11.08

= 7.01 see.

5. The lIft generatea by a wing is given as

L CLe-v2S2
where

p is the demlity of air (0.002378 slugs/ft3) (a mass of 1 slug weighs
32.2 lb at the st -face of Earth),

v is the forward velocity in feet per second,
S is the wing area, and
C L is ar experimentally determined constant called the lift coefficient.

One model of the Boeing 727 jet transport weighs 142,500 pounds and has
a wing area of 1,550 square feet. In the landing configuration, the maxi-
mum lift coefficient is 3.2. At what speed does the aircraft land? (As-
sume that landing speed is 1.1 times the minimum flying speed.)
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Solution. The minimum flying speed would be

2 (142,500)
V3.2 (0.002378) (1,550)

155.5

The landing speed is (1.1 ) (155.5 feet per second) -= 171 feet per second
= 117 miles per hour.





PROBABILITY

Some of the principles of elementary probability theory and simple corn-
binatorials are applied in this chapter. The problems involve primarily
the number of combinations of n objects taken r at a time, and independent
events. Of special interest is the application of probabilities in determin-
ing the reliability of spacecraft systems.

PROBLEMS

1. Suppose 21 astronauts are available for the lunar landing program and
12 have had orbital experience.

a. How many crews of three can be made up ?

Solution. Because in this problem the order of arrangement of the men in
the crews is immaterial, it is necessary to use a combination rather than a
permutation. Using ")Ii. to denote the number of combinations of n things

taken r at a time, we have

(21 2:1!

3 ) 3!(21 3)! o.

Thus 1 330 crews of three men each can be made up.

b. How many crews of three can be made with at least one experienced
and one inexperienced man on each crew ?

Solution. There are two cases to be considered here : We can have two
experienced and one inexperienced or one experienced and two inexperi-
enced astronauts make up the crew of three.

To get the number of crews of two experienced men and one inexperienced
man, we count 12 -= 66 ways of choosing two men from the 12 with

2

experience, and for each such choice, there are ( 91 ) = nine ways of choosing
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CHAPTER 5 PROBABILITY

one m .n from the nine without experience. Hence, there are (12 2) (

= (66) (9) = 594 different three-men crews having two experienced and
one inexperienced astronaut.

Similarly, there are (12) (
1 2

12 (36) = 432 different three-man crews

with one experienced and two inexperienced astronauts. Hence the total
number a possible crews is 594 + 432 _== 1,026, 304 less than th2 number
of possible unrestricted crews. (See problem la.)

NOTE: The reader should not infer from this problem that astronaut
teams are selected by chance. Many other factors enter into the making
of the selection.

2. The electronic telemetry system aboard a spacecraft transmits data of
spacecraft motion in the x, y, and z directions. The sytem consists of three
motion sensors, a signal conditioner, and a transmitter. The probability of
failure for each motion sensor and for the signal conditioner is 0.0001.
The probability of failure for the transmitter is 0.001. Assuming that
component failures are independent events and that the failure of any
component will render the telemetry system inoperative, compute the
probability of a spacecraft telemetry success.

Solution. The probability of success is equal to one minus the probability
of failure. Therefore, the probability of success for each sensor and the
signal conditioner is P = 1 0.0001

= 0.9999.

Similarly, the probability of success for the transmitter is

P = 1 0.001

-= 0.999.

The probability of success for the telemetry system is the product of prob-
abilities of success for each component ; that is,

P (0.9999)4(0.999)

0.9986.

3. The Service Module engine, whose thrust provided the velocity changes
needed to control the Apollo 8 spacecraft in lunar orbit on Christmas Day
1968, has been described as an extremely reliable engine with a failure to
start occurring about "once in a million times." During the Apollo 8 mis-
sion, the 20,500-pound-thrust engine was started seven times. Write an
expression for the probability of success of the engine on the mission.
Note that each start of the engine is an independent event.
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Solution. Because the probability of failure is "one in a million times," or
0.000001, the probability of success for each start is 1 0.000001, or
0.999999. The probability of success on seven consecutive starts is

P (0.999999)7

= (l. 0.000001)7

= 1 7 (0.000001) + 7 - (0.000001)2
2 1

1 0.000007 = 0.999993.

(We have used the binomial theorem to do this evaluation.)

4. A pilot who was forced to land because of an electrical malfunction in
his radar equipment is told that an improvised repair was made and that
there is a 25 percent chance that the radar will fail before he reaches his
home base. The weather report for his home base is as follows : 90 per-
cent chance of complete overcast, 50 percent chance of foggy conditions,
and 20 percent chance of rain. Consider each condition independent of the
others.

a. The pilot is willing to risk a 10 percent chance of landing in the rain
with the radar inoperative. Should he proceed or should he wait for a
more favorable weather report?

Solution. The probability of the pilot's having to land in the rain with the
radar out is the product of the probabilities of the two events, which is

P Frain Pradar out

(0.20) (0.25)

= 0.05.

The risk of 5 percent is less than that which the pilot is willing to take.
Thus the pilot would proceed to his home base.

b. Determine the probability that the pilot will land in foggy and overcast
conditions with the radar operating.

Solution. The probability of three independent events occurring is the
product of the probabilities of the events ; that is,

P Pfog Poyereaat Pradar operating

= (0.50)(0.90) (1 0.25)

= 0.3375 or 0.34.

c. What is the probability that the pilot will land in the rain with foggy
and overcast conditions while the radar is inoperative?
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Solution. The probability of these four independent events occurring is

P -= Frain Frog Poverewit Pradar out

= (0.20) (0.50) (0.90) (0.25)

= 0.0225 or 0.02.

d. Determine the probability that the pilot will land with clear, sunny
conditions and with the radar operating.

Solution. The desired probability is

P Pno overcast Pno rain pm fog Pradar opernting

= (1 0.90) (1 0.20) (1 0.50) (1 0.25)

0.037 or 0.04.

5. An aerospace consulting company is working on the design of a space-
craft system composed of three main subsystems, A, B, and C. The re-
liability, or probability of success, of each subsystem after three periods of
operation is displayed in the following table:

1 day 31/2 months 81/2 months
A 0.9997 0.8985 0.6910
B _ ___ 1.0000 .9386 .7265
C .9961 .9960 .9959

These reliabilities have been rounded to four significant digits. For ex-
ample, subsystem B could fail during the first day of operation, but the
likelihood of failure is so remote that more than four significant digits are
needed to indicate it If Ps is the total probability of success of the system,
find Ps for each of the three time periods.

Solution. For the first 24 hours,
Ps = PAPRPC

= (0.9997) 1 00) (0.9961)

= 0.9958

For a period of 31/2 months,

Ps = PAPSPC
= (0.8985) (0.9 6 ) (0.9960)

= 0.8399

For a period of 81/2 months,

PS PAPBPC

= (0.6910) (0.7265) (0.9959)

= 0.4999
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6. In problem 5 we saw that the total reliability of the system deteriorates
rather rapidly in its present stage of design, with less than a 50 percent
chance that it will operate after 81/2 months. The reliability of subsystem
C remains nearly constant, whereas the greatest decline in reliability takes
place in subsystem A, which contains one particular part that is expected
to wear out rapidly. The consulting firm is asked whether enough improve-
ment could be made in subsystem A to provide a reliability after 81/2 months
of 0.7500. Compute the improvement needed in subsystem A.

Solution. Let x be the factor by which the reliability of subsystem A
must be multiplied. Then, as before

Ps = PA ir)air)c

0.7:500 = (0.6910.r) 0.7965 0.9959 0.4999.r

0.7500=
9

1.500
0.499

The reliability of subsystem A must be L500 X 0.6910 = 1.037. The in-
crease in reliability cannot be obtained by improving subsystem A alone,
because the reliability cannot be greater than 1.

Cl
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EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The 12 problems in this chapter range from simple topics such as the half-
life of a radioisotope power supply to the more challenging applications of
logarithmic and exponential functions found in multistage rocket design.
To work successfully through the set of problems, it is necessary to derive,
solve, and write exponential and logarithmic equations.

Other topics upon which problems are based are sound intensity and the
decibel unit of measure, atmospheric pressure at varying altitudes, radio-
active materials, and electron beam intensity. A number of problems in-
vestigate the relationship of mass and mass ratios ef a rocket, the impos-
sibility of orbiting a payload with a single-stage rocket, the characteristics
associated with multistage rockets, and the actual design of a two-stage
launch vehicle.

PROBLEMS

1. The difference in intensity (energy) level of two sounds with intensities
/ and /0 is defined to be 10 log (1//0)decibels, where ro is the minimum in-
tensity detectable by the human ear. When two sounds differ in intensity
by a factor of 10, they differ in loudness by 1 bel ; a difference of 100 means
a loudness difference of 2 bels. In practice the unit used is the decibel,
one-tenth of a bel. Find the intensity level in decibels of the sound pro-
duced by an electric motor which is 189 times greater than /0.

Solution.. Substituting 189/0 for /, we have
189/010 log To- = 10 log

10 log 189

= 10(2.28)

= 22.8

Thus the intensity level is 22.8 decibels.

2. Testing a rocket engine for a certain spacecraft on the launch pad, the
noise level is found to be 100 decibels outside the spacecraft and 45 decibels

68



CHAPTER 6 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

inside. How many times greater is the noise intensity outside the space-
craft than inside ?

Solution.

and

Then

and

Let x intensity level outside

y intet -ity level inside.

100 10 log a

45 10 log y.

Subtracting the equations and solving for the ratio x/y gives

55 = 10(log x log y)

55 log
'II

antilog of 5.5 = 105.5

= 316,230.

Therefore, the noise intensity on the outside is approximately 316,000 times
greater than that on the inside of the spacecraft.

3. An approximate rule for atmospheric pressure at altitudes less than 50
miles is the following : Standard atmospheric pressure, 14.7 pounds per
square inch, is halved for each 3.25 miles of vertical ascent.

a. Write a simple exponential equation to express this rule.

Solution. Letting P denote the atmospheric pressure at alti udes less than
50 miles and h the altitude, we have

P 14.7 lbfin
1 yq3.26 mi

2

b. Compute the atmospheric pressure at an altitudeof 19.5 miles.

Solution. -Using the equation derived in part a,

P ----- (14.7 lb/ip.2)
)

219.5
mi/3.25 mi

-= (14.7 lb/in2)()

(14.7 lb/in2)4

0.23 IlV1n2.

c. Find the altitude at which the pressure is 20 percent of s andard atmos-
pheric pressure.
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Solution. Solving the derived equation for h, we have

=04.7 110112) = (14.7 lb/in')RI
5
1

2

(
nli

5 2_

71, ( h ) i_

3.25 mil_ log

(3.25 mi ) log
h - 0

1
log

= 7.54 mi.

d. What altitude is just above 99 percent of the at °sphere?

Solution. Because pressure and density are proportional, the desired alti-
tude is the point at which the pressure is 1 percent of standard atmospheric
pressure. Hence

(0.01)(14.7 lb/in') = (14.7 lb/in
A/3.25 1Di

0.01 =

A/3.25 rni

log 0.01 (3.25 mi l°g
1

h
(3.25 mi ) log 0.01

log
2

(3.25 mi)(-2)
-0.301

= 21.6 mi.

4. A certain radioactive material decays at a rate given by the equation

A = A0 10-ki

where A is in grams and t is in years. If Ao is 500 grams, find lc if A is 450
grams when t is 1,000 years.

Solution. Applying the given equation and solving for k yields
450 g = 500 g X 10-,.°00 yr)

log 450 = log 500 - k (1,000 yr) (log 10)
k (1,000 yr) = log 500 log 450

= 2.6990 2.6532

= 0.0458
k = 0.0000458/yr.
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5. The intensity of a beam of radiation af er passing through a material
is given by the equation

1 Io 10-",

where 1 0 is the original intensity, t the thickness in centimeters, and k an
absorption coefficient. If a beam of gamma radiation is reduced from 1
million electron volts to 100,000 electron volts while passing through a sheet
of material with k = 0.08, find the thickness of the material.

Solution. Using the given values and solving for t gives
105 = (106)10-0.081

1

log 1M-
0.081 log 10

1
t

= 12.5.

Thus the thickness is 12.5 centimeters.

6. A satellite has a radioisotope power supply. The power output in watts
is given by the equation

P 50e- i/250

where t is the time in days and e is the base of natural logarithms.

a. How much power will be available at the end of 1 year?

Solution. Applying the given equation, we have
= 50e-3bs2s0

= 50e--"46

= 50 X 0.232236
= 11.6.

Thus approximately 11.6 watts will be available at the end of 1 year.

b. Wliat is the half-life of the power supply ? In other words, how long
will it take for the power to drop to half its original strength ?

Solution. To find the half-life, we solve the equation
25 = 50(3-025o

for t and obtain
t = In 0.5

250
= 0.69315

t 250 X 0.69315

= 173.
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Thus the half-life of the power supply is approximately 173 days. Note
that In x is a shorter expression for loge x.)

c. The equipment aboard the satellite requires 10 watts of power to operate
properly. What is the operational life of the satellite?

Solution. Solving the equation

for t gives
10 = 500-'123°

t 10
2.50 al 50

= In 0.2

= 1.60944
t = 250 X 1.60944

= 402.

Hence the operational life of the satellite is 402 days.

7. The velocity gained by a launch vehicle when its propellant is burned
to depletion is expressed by the equation

= c log, R.

The velocity gained during the burn is v, the exhaust velocity is c, e is the
base of natural logarithms, and R is the mass ratio. Because some high
school students may not be acquainted with natural logarithms (base e) , it
may be convenient to use the rule for changing the base to express the given
equation in base 10, the base of common logarithms. The conversion of
natural logarithms to logarithms on the base 10 simply involves multiplica-
tion by a fixed number, because

log. R = (log. 10) (log10 R).

The conversion factor log, 10 is, like 7 and e, a transcendental number. To
two decimal places, log. 10 2.30. Thus our equation can be replaced by
the approximate equation

v = c(2.30) log10 R.

takeoff weightThe mass ratio R is defined by R This definition ap-burnout weight'
plies whether we are considering the entire launch vehicle or just a single
stage. The takeoff weight consists of propellant or fuel F, structure S. and
payload P. Thus the mass ratio may be written as

R
F±S±P

+ F
At burnout all of the fuel has been used and F = 0. It has been found that
the weight of fuel cannot be more than about 10 times the weight of the
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structure, because if the structure is too weak for the weight of fuel carried,
the vehicle may not stand the stresses of operation. Thus the largest pos-
sible value for R is

Because

10S S + P
+ I

118 + P
S + P

115 + P 10P
8 + P P

10P
1

we see that the largest possible value for R is 11. Unfortunately, for R to
be equal to 11, P must be zero ; i.e., a vehicle designed with R = 11 has no
room for a payload.

The minimum altitude for a stable orbit about Earth is about 100 miles. At
lower altitudes, air resistance slcws the spacecraft and causes rapid deterio-
ration of the orbit. As will be noted in Chapter 10, the orbital velocity at
100 miles is nea. y 17,500 miles per hour or about 25,600 feet per second.
The rocket equation gives the ideal velocity, and ignores losses resulting
from the pull of Earth's gravity and the resistance of the heavy atmosphere
surrounding Earth at low altitudes. The total drag losses are of the order
of 4,000 feet per second for a launch to a 100-mile orbit, so that the total
velocity imparted by the launch vehicle must be 25,600 ± 4,000 = 29,600
feet per second, which we shall round for convenience to 30,000 feet per
second. If the highest energy propellant available for takeoff from the
surface of Earth has an average exhaust velocity of 9,600 feet per second,
compute the performance of a launch vehicle with R = 11.

Solution. Substituting c 9,600 feet per second and R = 11 in the rocket
equation, we obtain

v = (9,600) (2.30) log 11

= (22,080)(1.04)

= 22,960 or 23,000 ft/sec.

Thus the launch vehicle cannot fly itself, much less a payload, into Earth
orbit. An additional velocity of 7,000 feet per second is needed.

8. What exhaust velocity must the propellant supply to place the launch
vehicle from the previous problem in orbit?

Solution.

we get

Solving the equation

30,000 ft/see c(2.30) log 11,

30,000
2.30 log 11

= 12,500 ft/sec.
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Exhaust velocities of 12,500 feet per second and more are available from a
mixture of liquid hydrogen and liquid oxygen. However, large engines
suitable for using this propellant mixture for launches from the surface of
Earth have not yet been perfected.

9. It is apparent from the rocket equation that the burnout velocity in-
creases when the mass ratio increases. We can get a higher mass ratio by
using a solid propellant because the stiff rubberlike propellant mass serves
as part of the structure. If no payload, or a very small payload, is included,
a solid-propellant rocket could have a mass ratio of about 19. A typical
average exhaust velocity for a solid propellant might be about 8,000 feet
per second. Could this launch vehicle achieve a 100-mile Earth orbit ?

Solution. Using the rocket equation,

v = (8,000) (2.30) log 19

= (18,400) (1.28)

= 23,550 or 23,600 ft c.

The speed achieved is much less than that needed for orbit.

10. The solution to the problem pointed out in the previous examples is to
use staging. That is, the launch vehicle is divided into two or more parts
or stages. As soon as the propellant has been all burned in the first stage,
there is a brief coast during which the heavy motors and structure in the
first stage are jettisoned and permitted to fall into the ocean. Freed from
this deadweight, the second-stage motors are much more effective ; the
same procedure is repeated for the remaining stages.

Let. us design a two-stage vehicle to place a payload into Earth orbit. We
shall make three assumptions : (1) that the structure weight of each stage
is 10 percent of the fuel weight, the remaining weight being payload ; (2)
that the gain in velocity is divided equally among the stages, each contrib-
uting 15,000 feet per second to the required final velocity of 30,000 feet per
second ; and (3) that all stages use the same propellant with an exhaust
velocity of 12,000 feet per second. This third assumption in particular is
unrealistic because no first-stage propellant in use today produces an ex-
haust velocity this high, whereas second- and third-stage propellants pro-
duce higher exhaust velocities than this. However, an assumed exhaust
velocity of 12,000 feet per second is satisfactory as an overall average.
The total weight at liftoff is to be 100,000 pounds.

Solution. First stage:
v = c(2.30) log R1

15,000 = (12,000) (2.30) log R1
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By assumption (1),

15
'
000

log R, 0.527,60043

R, 3.492 = 3.5

RI FI S1 + F1= 3 ,5
01

00,000
81 -1- PI

100 000
' 28,600

3.5St + P1

F1 = 100,000 28,600 = 71,400

SI (0.10) (71,400) 7,140 lb

P1 = 28,600 7,140 = 21,460 lb.

NOTE : The payload of 21,460 pounds for the first stage includes all of the
remaining weight, including the entire second stage and orbital payload.

Second stage:
15 000log R2 - -

00
0.543

27,6

F2 + 82 + P2
82 + Pi

21,460
6,130

3.5

F2 = 21,460 6,130 = 15,330

82 = (0.10) (15,300) = 1,533

P2 =` 6,130 1,533 = 4,597 or 4,600 lb.

Our design for the two-stage launch vehicle may be checked as follows:

Weight of fuel : Pounds
F1 71,400
F2 15,330

Total 86,730

Weight of structure :
Si 7,140
82 1,533

Total 8,673

Weight of orbital payload 4,597

Total weight of vehicle 100,000

Thus, although the single-stage launch vehicle discussed in problem 7 could
not place any payload into orbit, this two-stage vehicle can place nearly 5
percent of its weight into Earth orbit.

75



CHAPTER 6 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

H. Show that when all stages use the same propellant, the total mass ratio
of a multiple-stage launch vehicle is equal to the product of the individual
mass ratios.

Solution. Indicate the burnout velocities and mass ratios of the first,
second, third stages, etc., by the subscripts 1, 2, 3, etc. Then, using a
three-stage vehicle as an example,

+ v2 ± v --- 2.30c log R1 + 2.30c log R2 + 2.30c log R3

V == (2.30c) (log RI + log R2 ± log R3)

° (2.30c) (log R1R2R3)

NOTE : Making the structure stronger so that it can support large pay-
loads reduces the mass ratios. However, if we have several stages, the
total mass ratio can bccome very high, producing much greater perform-
ance.

12. Using the equation derived in problem 11, show that the launch vehicle
constructed in problem 10 can indeed orbit its payload.

Solution. Given R,R, = (3.5) (3.5) = 12.25

v = 2.30c log 12.25

(2.30) (12,000) (1.09)

= (27,600)(1.09)

= 30,084 or 30,000 ft/sec.

The launch vehicle will impart sufficient velocity to overcome drag losses
and insert the payload into a 100-mile Earth orbit. Note that dividing the
launch vehicle into stages increases the overall mass ratio to 12.25.
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GEOMETRY AND RELATED CONCEPTS

The analysis of many mathematical problems involves geometrical concepts
that are not always apparent. The 13 problems contained in this chapter
range from the pure and obviously geometrical problems to some which
seem, at first reading, only vaguely related to geometry.

In the first category are problems concerning solar cells, area and load on
the feet of a Moon landing craft, and the distance to the horizon from a
given altitude above Earth or the Moon.

Problems based on geometry but more algebraic in nature include trans-
forming a rectangular map into an isosceles trapbzoidal map, relationships
of volumes and areas in spacecraft pressure and storage tanks, measuring
the diameter of the Moon and Sun, determining the period of a planet, and
measuring the distance between Earth and Mars.

PROBLEMS

I. Solar cells convert the energy of sunlight directly into electrical energy.
For each square centimeter of solar cell in direct overhead sunlight, about
0.01 watt of electrical power is available. A solar cell in the shape of a
regular hexagon is required to deliver 10.4 watts. Find the minimum
length of a side.

Solution. The total area required is 10.4 watts/0.01 watt per square cen-
timeter, or 1,040 square centimeters. The regular hexagon can be parti-
tioned into six congruent equilateral triangles, each with an area of
1,040/6 173 square centimeters.
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The area A of any equilateral triangle with side s may be expressed
1A . (ba-e) (altitude)
2

Solving for s, we have
4

s
\I4A

vra

-\/
4 (173 2

L73

1/400 cm2

--- 20 cm.

2. Solar cells are made in various shapes to utilize most of the lateral area
of satellites. A certain circular solar cell with radius r will produce 5 watts.
Two equivalent solar cells are made, one being a square with side s and the
other an equilateral triangle with side p. Find r in terms of p and also in
terms of s.

Solution. For the solar cells to have equivalent ou puts, their areas must
be equal. Thus for the circle and square, we have

Acireie Aequare

2 82

r =

= 0.564s.

For the circle and equilateral triangle, we have

A circle Acquilateral riengl

,ni
rr2

4
""

3. A spacecraft is to be soft landed on the Moon with a maximum impact
force of 1,500 pounds. Three legs, each with a large circular foot, will sup-
port the spacecraft after landing. As a safety factor, it is assumed that
the Moon's surface will support a maximum of 1.5 pounds per square inch.
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Allowing for a possible 50-percent overload on any foot, determine the min-
imum radius of the foot.

Solution. Each foot must be able to support 500 pounds plus a 250-pound
overload. Hence, the minimum area A for each foot is

750 lb
A L5 lb/m2

and the radius of the foot is
500 in2

500 in2 = wr2

r 500

12.6 in.

4. Because a sphere has the minimum surface area for a given volume and
a spherical container has the maximum strength for a given thickness of
metal, spherical tanks are often used on spacecraft to hold pressurized
gases and prol,ellants. It is decided for a certain application that the vol-
ume of a spherical tank must be doubled. What increase is required in the
radius ?

Solution. Let r and R be the radii of the smaller and larger tanks respec-
tively. Then,

Dividing,

4
V

3

4
2V rrRa.

3

1 r3

2 R3

R' 2r3

R ."Y r = 1.26r.

5. Consider a spherical tank of radius r, and a cylindrical tank with radius
R and altitude equal to the diameter 2R.

a. Compute R in terms of r if the volu es of the two tanks are equa

Solution. If R is the radius of the cylindrical tank, then

V = 7R2 X 2R = 2r1V.

Because the volumes are equal,
4

271-Ra rr3
3

/? r = 0.874r.
3

5
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b. How do the surface areas of the two tanks compare?

Solution. The area of the cylinder is

A 2-7rR2 + (27R x 21?)

= 67r,R2

r
)2

3

67/.2(0.874

14.4r2.

The area of the sphere with equal volume is

'1 47r2

12.6r2.

Thus the surface of the sphere is about 87.5 percent of the area of the cyl-
inder.

6. A spacecraft is at P, at an altitude IL above Earth's surface, as pictured
in the accompanying drawing. The distance to the horizon is d, and r is
the radius of Earth.

a. Derive an equation for d in terms of r and h.

Solution. Because PA is tangent to the circle at A, angle PAO is a right
angle. Then

r2 ± d2 = (r h)2

d' (r h)2 r2

= 2rh ± h2

d h2.

b. Find the distance to the horizon if h.. 100 miles. Use 3,960 miles for

the radius of Earth:
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Solution.
d V2(3,960)(100) +

V802,000

102V-8-6.2-

896 mi.

100 2

c. It is apparent that for near-Earth orbits, h will be small in comparison
with r, so that discarding the h2 term introduces only a small error. The
formula then simplifies to d Find d with the simplified formula,
and compute the percent of error that results when the h term is dropped.

Solution.
d V2 (3,960) (100)

V7-9-2,00

102V79.2

890 mi.

6The percent of error is 896
0.0067 =-_ 0.67 percent.

7. Solve problem 6 with respect to the Moon's horizon for a spacecraft 70
miles above the surface of the Moon. Use 1,080 miles for the radius of the
Moon.

Solution.
d (7 0)2

= V156,100

1021/15.6

395 mi.

d = -V2(1,080) 70)

V151,200

=- 102-V15.1

= 389 mi.

6The percent of e o = 0.015 = 1.5 per ent.
9

8. Some phases of instrumentation mapping on space shots require that a
rectangular map be transformed into an isosceles trapezoid map with the
same height and perimeter. Consider the following problem.
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Transform the rectangle with sides A and B into an isosceles trapezoid with
sides L and bases K and B ± C. The perimeter P and height A must re-
main constant. Find the new length K in terms of A, 9, and C. (Note
that the lower base increases by an amount C, whereas the upper base de-
creases by an amount N, where N > C.)

Solution. Equating the perimeters, we have

Prectangle Ptrapezoid

2A + 2B = (B C) + K + 2L

K = 2A + 29 (B + C)

Note that B = K N, or N = B K. Applying the Pythagorean theorem,
we have

Then

L = 41A2 + CIf=
2 2

K 2A 2B B 2\1A 2

K 2A B + C = 4A2 + /13 K C\
2

Squaring both sides and simplifying, we have

[-2A (B K C)12 4A 2 -F (B K + C)2

2BC 2KC = 4AB 4AK 4AC 29C + 2KC

4KC + 4AK = 4AB 4AC 4BC

4K(A C) 4(AB AC BC)

AB AC BC
K A C

9. The average angle subtended by the Moon for an observer on Earth is
0.52' or 0.00907 radian. If the average distance from an observer on

S
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Earth to the center of the Moon is known to be 384,400 kilometers, find the
diameter of the Moon. Assume POM is a right triangle.

Solution. Using the tangent function, the radius of the Moon MP is found
to be

MP (tan 0.26°) (384,400 km)

(0.00454) (384,400 lun)

= 1,745 km,

and the diameter of the Moon is 2MP approxihiately 3,490 kilometers, Or
2,168 miles. The accepted diameter is 2,160 miles.

Alternate solution. Because 0.00907 radian is such an extremely small
angle, the length of the arc it subtends very closely approximates the radius
of the Moon. Using the formula S = rO, where S is the length of a circular
arc, r is the radius of the circle, and 0 is the radian measure of the angle
subtended by the arc, the diameter is found to be

Dpi (384,400 km) (0.00907)

= 3,487 km or 2,167 mi.

10. The average angle subtended by the Sun for an observer on the surface
of Earth is 0.533'. Assuming that the diameter of the Sun is 866,000
miles, find the distance from the surface of Earth to the center of the
Sun. Assume OCT is a right triangle.

7

Solution. Consider the right triangle OCT. Because the total angle sub-
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tended by the Sun as viewed by an Earth observer is 0.533°, angle TOG is
one-half the angle subtended or 0.267°.

The distance OC between Earth's surface and the center of the Sun may be
calculated by using the tangent function:

TC
tan 0 7C or OC

OC tan 0

433,000 mi 92,900,000 mi.
0.00466

11. Determine the period of revolution of the planet Mars about the Sun.
The period of Earth is 365 days (approximately), and Earth and Mars are
in opposition (Earth is directly between the Sun and Mars ), about every
780 days.

We know according to Kepler's laws that the period of Mars is greater than
the period of Earth because the radius of orbit is greater for Mars.

NOTE : The period of Mars is less than 1,000 days.

Solution. Let 8, El, MI and 8, E'0, M2 represent the positions at the first
and second oppositions as indicated in the figure.

A41

Each day, Earth moves an angular distance of (3607365). Thus in the
780 days between oppositions, Earth moves an angular distance of 780
days X (3607365 days) = 7 6 9 . Accordingly, angles E1SE2 and M1SM2
= 769' 720° = 49°. Between oppositions Mars moves an angular dis-
tance of 360' plus 490, or 409°. Therefore the period of Mars is

780 days
360' 686.5 days.
4

Note that if we assumed Mars moves only 49° between oppositions, the
period would be greater than 5,000 days. On the other hand, if we assumed
Mars moves 2 (360°) + 49°, its period would be equal to that of Earth,
which is impossible because the radius of orbit for Mars is greater than
that of Earth.
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12. Determine the distance between the Sun and Mars in astronomical
units, AU. One AU is the mean distance from Earth to the Sum We are
given that 106 days after Mars is in opposition (see previous problem), the
Sun, Earth, and Mars form a right triangle with the right angle at Earth.

Solutiom

Angle E2SM2 is equal to angle a
Earth has moved,

where a

360°
106 days 365 days
104.5°,

and is the angle through which Mars has moved,

360°= 106 days 687 days
55.5°.

the angle through which

The distance SMo between the Sun and Mars in astronomical units is

sec L3) = sec 49° = 1.52.

13. From Earth, the planet Mercury appears to oscillate about the Sun, ap-
pearing at elongation (its maximum angular distance from the Sun as seen
from Earth) every 58 days. Earth and Mercury revolve in the same
direction, counterclockwise as viewed from the north pole of the Sun. De-
termine the period of revolution of the planet MercurY.
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Solution. An elongation occurs at SE,M,. Fifty-eight days later Mercury
is at elongation on the other side of the Sun, and another 58 days later it is
at the elongation 8E2M2. During the 116 days Mercury has traversed one
revolution plus the arc MN,. Earth has traversed in 116 days the angular

distance 116 3: = 114°. Now the triangles SE1/1/1 and SE2M2 are

congruent. Arc E1E2 is 114', and therefore arc M1M2 is also 114°. Hence
the period of Mercury is

116 days
360° 360° + H4°

88.1 days

87 /V





hEDIET
TRIGONOMETRY

In space-related science, trigonometry has many applications ranging from
solutions of right triangles to problems of a complex analytical nature.
Seventeen problems from diversified areas are presented in this chapter.

Problems requiring basically the solution of right triangles involve finding
lengths of parallels of latitude, angles between satellites, altitudes, climb
rates, climb angles, and the tracking of model rockets. A series of naviga-
tion problems deals with both oblique and right triangles.

The power output of a solar cell is investigated in terms of the angle of
the incident sunlight. The law of sines and the law of cosines are used in
several problems concerning radar acquisition of satellites.

PROBLEMS

1. The weight of an astronaut on the Moon is one-sixth his weight on
Earth. This fact has a marked effect on such simple acts as walking,
running, jumping, and the like. To study these effects and to train astro-
nauts for working under lunar gravity conditions, scientists at NASA
Langley Research Center have designed an inclined plane apparatus to
simulate reduced gravity.
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The apparatus consists of an inclined plane and a sling that holds the astro-
naut in a position perpendicular to the inclined plane. The sling is at-
tached to one end of a long cable which runs parallel to the inclined plane.
The other end of the cable is attached to a trolley that runs along a track
high overhead. This device allows the astronaut to move freely in a plane
perpendicular to the inclined plane.

a. Let W be the weight of the astronaut and 0 the angle between the in-
clined plane and the ground. Make a vector diagram to show the tension
in the cable and the force exerted by the inclined plane against the feet of
the astronaut.

Solution. The weight of the astronaut is resolved into two components,
one parallel to the inclined plane, the other perpendicular to it. These
components are W sin 0 and W cos 9, respectively. To be in equilibrium,
the component W sin 0 must be balanced by the tension in the cable, and the
component W cos 0 must be balanced by the force exerted by the inclined
plane.

b. From the point of view of the astronaut in the sling, the inclined plane

is the ground and his weight, that is, the downward force against the in-
clined plane, is W cos O. What is the value of 9 required to simulate lunar
gravity? What is the tension in the cable?

Solution. To simulate lunar gravity we must have W cos/0 W/6. Thus
cos 0 = 1/6 = 0.1667, and 0 = 80°24' to the nearest minute. The tension in
the cable is TV sin 80°24' = 0.986 W.

2. A radar station tracking an aircraft indicates the elevation angle to be
200 and the slant range to be 40 miles. Determine the altitude and hori-
zontal range of the aircraft.
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Solution.

The altitude is

and the horizqntal range is

Horizontal range

BC = (40 mi) (Sin Dr)

13.7 mi

AC = (40 nu )(cos 20°)

37.6 mi.

3. In 1 minute, an airplane climbing at a constant angle of 12° has flown
a distance of 1.0 mile measured along its line of flight. Find the rate of
climb of the airplane in miles per minute.

Solut ion.

Computing the rate of climb R using the sine function yields

12° 1.0 m nun

R 0.2079 2.1 in.

4. Show that the length of any parallel of latitude around Earth is equal
to the equatorial distance around Earth times the cosine of the latitude
angle.

Solut ion.

By the definition of the cosine function, cos 0 r/R or r = R cos 0. The
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length of the parallel of latitude is C. If Cr. denotes the average circum-
ference of Earth, then

C 27rr

27rR cos 0

C, cos 0.

5. Find the length of the 300 parallel, n rth or south latitude. Use 217

6.283 and R 3,960 miles.

Solution. Applying the formula for the length of a parallel of latitude
derived in problem 4 gives

C = (24,900 mi) (cos 30°)

(24,900 mi) (0.866)

-- 21,560 or 21,600 mi.

6. Determine the length of the Arctic Circle (66033 N).

Solution. Using the formula from problem 4, the length is

C (24,900 mi ) (cos 66°33')

(24,900 mi) (0.39795)

-- 9,910 mi.

7. How far is it "around the world" along the parallel of 800 N latitude?

Solution. Using the result of problem 4, the distance is

C, (24,900 mi) (cos SO')

(24,900 mi) (0.1736.5)

4,320 mi.

8. A sweeping light beam is used with a light-source detector to determine
the height of clouds directly above the detector, as in the following diagram.

Clouds

Light beam Axis of detector
h
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With the axis of the detector vertical, the light beam is allowed to sweep
from the horizontal (a = 0) to the vertical (a 90°). When the beam
illuminates the base of the clouds directly above the detector, as in the
figure, the angle a is read, and with d known, the height h can be computed.

a. Express h in terms of an appropriate triconometric function of CY and d.

Solution. Apply ng the definition of the tangent function gives

h = d(tan a).

b. If the light source is 1,000 feet from the detector and the angle is 450,
compute the height of the cloud.

Solution. Using the equation from part a gives

h (1,000 ft) (tan 450)

-= 1,000 ft.

c. If the height of the cloud is 2,050 feet and the distance d is 1,000 feet,
compute the angle a.

Solution. Using the same equa ion, we find

2,050 ft = (1,000 ft)(tan a

2.050 = tan a

a = 640.

d. Find the angle a when clouds are 1,000 feet high and the light source is
located 100 feet from the detector.

Solution. Applying the same equation again gives

1,000 ft = (100 ft)(tan a)

10 = tan a

a 84.290 or about 840 .

9. The light source in problem 8 must be reasonably close to the detector
so that the illumination of the cloud above the detector is sufficiently strong
to be detected. At many U.S. National Weather Service stations two beam
sources are used, one 800 feet and the other 1,600 feet from the detector.
To have reliable readings, a may not exceed 85°.

a. If a = 850 and d = 1,600 feet, compute the height of the cloud.

Solution. Using the equation from problem Sa, the height is

h = (1,600 ft) (tan 85°)

= 18,288 or 18,300 ft.
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b. If a = 85° for the light source at 800 feet find a for the light source at
1,600 feet (assuming the same cloud height).

Solution. Working with the closer light source, the cloud height is found
to be 9,144 feet. Thus the angle for the other light source is

9,144 ft = (1,600 ft) (tan a)

5.715 tan a

a = 80.07° or 80'.

10. In problem 8, notice that as the beam rotates from a = 0° to a 90° at
a constant angular rate, the point of intersection of the beam with the axis
accelerates upward.

a. Complete the sentence The smaller the angle the the speed of the
point of intersection."

Solution. Because the point of intersection of the beam accelerates upward
as a goes from 0° to 90°, "the smaller a, the slower the speed of the point of
intersection."

b. If d = 1,000 feet, compute the difference of the height of intersection of
beam and axis for a = 20° and a 25'.

Solution. The heights when a is 20° and 25° are, respectively
h (1,000 ft) (tan 20°)

= 364 ft
and

h (1,000 ft)(tan 25°)

= 466 ft-

Thus the difference in height is 466 364 feet or 102 feet.

11. A spacecraft designed to soft land on the Moon has three feet that form
an equilateral triangle on level ground and each of the three legs makes an
angle of 37° with the vertical. If the impact force of 1,500 pounds is evenly
distributed, find the force in eaeh leg.

500 lb
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Solution. Consider one leg. Five hundred pounds is the vertical com-
ponent of force R acting at 37° from the vertical. Thus

500 lb
cos 37

500 lb
cos 37°

626 lb.

12. Consider a flight from Chicago to Boston to be along a west-to-east
direction, with an airline distance of 870 statute miles. A light plane hav-
ing an airspeed of 180 miles per hour makes the round trip.

a. How many flying hours does it take for the round trip with a constant
southerly wind of 23 miles per hour ? What are the headings for the two
parts of the round trip ? Disregard magnetic variation.

Solution. Let 0 be the angle necessary to compensate for the wind.

Ground speed

Then
23sin 0 = 0.128
180

and
0 -= 7°21'.

Hence the ground speed of the plane is

(cos 7°21') (180 mi/hr) 179 mi/hr.

The round trip will take

1,740 mi 9.72 hr or about 9 hr 43 mitt.179 mijhr

23

The heading for the trip from west to east is 90° -I- 7°21', or 97°21', and
the heading for the trip from east to west is 270° 7'21', or 262°39'.

b. How many flying hours will it take for the round trip with a constant
southwest wind of 23 miles per hour? What headings will the pilot use
for the two parts of the trip ? Disregard magnetic variation.

Solution. For the eastbound trip the law of sines is applied to determine 0 .

Ground speed
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sin 0 -=
23 sin 45 0.090
180

0 = 5°10'.

Applying the law of sines again, the ground speed represented by AB is
determined as follows :

AB 180
sin C sin

sin 129'50'
or AB X 180sin 45°

= 197 mi/hr.

Thus the time required for the eastbound trip is
870 mi

197 mi h 4.42 hr.

For the westbound trip, 0 is again 5°10' and the ground speed is found by
use of the law of sines.

si 39°50'AR
n
sin 135°

X 180 mi/hr ---- 163 mi/hr,

and the time required is
870 mi 5.34 hr.163 mi/hr

Thus the total time for the round trip is 9.76 hours, or 9 hours 46 minutes.
The heading for the eastbound trip is 90° + 5'10' or 95°10' and the heading
for the westbound trip is 270° 5°10', or 264°50'.

13. Magnetic variation is a correction or adjustment that has to be con-
sidered after you have computed the heading for an aircraft flight. Be-
cause of the fact that the magnetic north pole is not located at the geo-
graphic north pole (it is actually in northern Canada), the north-seeking
compass will point west of north in the eastern part of the United States,
and east of north in the western part. These are called west and east
(magnetic) variation, respectively, and are indicated on some maps by lines
called isogonic lines (lines of indicated value of magnetic declination) show-
ing values of the magnetic variation for any point. If you flew on a mag-
netic course of 0' (north) from Boston, you would be flying about 15°30'
west of north. If you really want to fly north, your compass would read
15°30'. Thus you must add 15°30' to your computed heading to allow for
the magnetic variation, on any heading. Conversely, if you were flying in
the vicinity of Seattle, you would have to subtract 22° from any computed
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heading because the magnetic deviation there is 22° E. (For example, if
you want a heading of due east (90') from Seattle, your compass would
read 68°.)

For the trip and conditions of problem 12a, adjust the computed headings
to take into account magnetic variation. Consider variation at Chicago to
be 2Q E and at Boston 15'30' W.

a. Find initial and final headings foi the eastbound trip.

Solution. Making the proper adjustments gives
Initial heading (at Chicago) 97°21' 2° = 95'21',

Final heading (at Boston ) 97°21' ± 15°30' = 112'51'.

b. Find the initial and final headings for the westbound trip.

Solution. The desired headings are

Initial heading (at Boston) = 202°39' 4- 15°30' = 278°9',

Final heading (at Chicago) = 262°39' 2° = 200°39'.

14. Two tracking stations s miles apart measure the elevation angle of a
weather balloon to be a and ,e, respectively. Derive a formula for the alti-
tude h of the balloon in terms of the angles a and p. Ignore the Earth's
curvature.

Solution. Writing an equation for the cotangent of each angle and solving
for x gives

scot a

x h cot a s

cot 13

x h cot p.

Now the two expressions for x are equated :

h cot a s = h cot 0.

and



Thus

or
h(cot a cot. 0) = s

h
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cot a CO

15. A typical se up for tracking model rockets is shown in the following
sketch.

Theodolites, which are instruments used for measuring horizontal and verti-
cal angles, are set up and leveled so that their azimuth dials are horizontal.
They are zeroed in by sighting at each other along the baseline. While
zeroed in, their azimuth and elevation dials are set at zero.

When a model rocket is launched, both station operators track the rocket
until it reaches maximum altitude. Tracking then ceases and the scopes
are locked in final position. Azimuth and elevation angles on each theo-
dolite area are read. On some ranges, these data are communicated to the
launch area by means of a telephone system. On other ranges, data are
recorded at each tracking station and later taken to the launch area for
final reduction.

a. Assume that you are given distance b and angles er, p, 0, and Derive
an equation for RX, the altitude of the model rocket, in terms of the given
data.

Solution. Point X is directly beneath the model R, and the distance RX is
the altitude of the model. We find an expression for the distance and solve
the triangle R X-West in the vertical plane to find RX.

Using the law of sines in trigonometry gives

a b

sin a sin 7 sin 13
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or
bsinj3 bsinflc = sin 7 sin [180° + 0)]

Because R is directly above X by definition, the angle R-X-West is a right
angle. We can therefore compute the western triangle as follows:

RXtan 0
e

Substituting for c, we find

RX

or RX c tan O.

b sin 13 tan
in [180° (a ± (3)]

In a similar manner the other right vertical triangle may be solved to give
b sin a tau cPRX = sin [180' (a + ,3)]

The two values of RX may be compared ; and if they differ by more than
about 10 percent, an error is apparent. Otherwise, the track is good. The
average of the two values of RX gives a more accurate value of the altitude
achieved by the model.

A general rule for accuracy in the tracking of model rockets is that the
angles are rounded to the nearest degree and the altitude is rounded to the
nearest 10 feet. If the digit to be rounded is a 5 and the preceding digit
is an odd digit, then the 5 is dropped and the preceding digit is increased
by 1. If the digit preceding the 5 is an even digit, the 5 is simply dropped.
Accordingly, a correctly rounded altitude will always be an even number.

b. Given a 1,000-foot baseline, tracking East azimuth 13 = 23°, tracking
East elevation 0 = 36°, tracking West azimuth a = 45°, and tracking West
elevation = 53°, find RX and determine whether the track is good.

Solution. Applying the derived equation gives
b sin (3 tanRX sin [180' (a ± fl)]

1,000 ft (sin 23°) (tan 53°)
sin [180° (45° + 23°)]

1,000 ft (0.391)(1.327)
'n 112'

= (0.391)(1.327)(1,079 ft)

--- 560 ft.

Similarly, solving the other triangle gives RX = 554 feet.

The average altitude is 557 feet, but rounding makes it 560 feet. Both 560
and 554 are within 10 percent of the average, so the track is good.
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16. A satellite traveling in a circular orbit 1,000 miles above Earth is due
to pass directly over a tracking station at noon. Assume that the satellite
takes 2 hours to make an orbit and that the radius of Earth is 4,000 miles.

a. If the tracking antenna is aimed 30° above the horizon, at what time wi'i
the satellite pass through the beam of the antenna?

Solution. From the law of sines,

Hence

and

sin
4,000 5,000

4,000 sin 120'sin a 0.693.
0

a = 43.9'

= 180° (1200 + 43.90) 16.1'.

16.1°
Time between 13 = 16.1° and 13 = 0.0° is (120 min) = 5.4 min. Thus

the satellite will pass through the beam of the antenna at 12:00 5.4 min-
utes or 11:54.6 a.m.

b. Find the distance between the satellite and tracking station at 12:03 p.m.
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So lu ion. Computing angle s gives
3 min 3600 = 90.120 min

By the law of cosines,

X2 -= (4,000)2 + (5,000)2 2 (4,000)(5,000) cos 9'

= (16 + 25 39.51) X 106

= 1.49 X 106

x 1.22 x 103 = 1,220.

Thus the distance between the satellite and tracking station is 1,220 miles.

c. At what angle above the horizon should the antenna be pointed so that
its beam will intercept the satellite at 12 :03 p.m.?

Solution.

102

Again applying the law of sines,
sin 9' sin (7 -1- 90°)
1,220 5,000

5,000sin (1, ± 900) 1,220

cos 7 = 0.641

= 50°8' or 50°

sin 90 = 0.641
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17. A satellite C in an equatorial orbit is being tracked by two s ations A
and B both located on the Equator.

Given r, = 4,000 miles, a = 300, p = 500, and y = 300, compute the height h
of the satellite C above the Equator, by following these steps :

a. Notice that triangle AOB is isosceles. Compute the length AB using
the law of sines and the fact that 28 = 1800 (a ± p) = 100°.

b. Compute the length AC. The angle ABC at B is 900 8 ± 700, and
angle OAC is a right angle.

c. Now use the Pythagorean theorem in triangle ACO to compute the
length OC.

d. Compute the altitude h.

Solution.

a.
26 = 1800 (a ± 180' 80° = 100'

= 50°.

From the giv n data it is known that angle AOB = a ± P = 80°.
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Now by the law of sines
_AB 4,000 mi

sin 80° sin 50°

AB (4
'
000 mi) (0.985)

0.766

= 5,140 mi.

b. We know that LBAC = 90° z OAB, but LOAB = 8 = 50'. Thus
ZBAC = 40° and LACB = 180' (70° ± 40') 70°.

A

We see that triangle ABC is isosceles, therefore AB = AC = 5,140 miles.

C. By the Pythagorean theorem
(0C)2 = (A0)2 ± (AC )2

= (4,000 mi)2 + (5,140 mi )2

= 16,000,000 mi2 + 26,420,000 mi2

= 42,420,000 mi2

OC = 6,513 mi.

d. The height h of the satellite above the Equator is represented by CD,
which is

OC OD = 6,513 mi 4,000 mi

= 2,513 mi.
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GEOMETRY AND TRIGONOMETRY
RELATED TO THE SPHERE

This chapter deals only with mathematics related to the sphere. Some
problems involve spherical geometry, some use plane trigonometry to ana-
lyze plane figures related to the sphere, and a few use spherical trigonometry
to study figures on the surface of the sphere.

A series of problems deals with the percent of the surface that is visible
from a given altitude above a spherical body. Others are concerned with
distances and angles of lines of sight involved in the tracking of satellites
by tracking stations. One problem considers the rotation of the "line of
apsides" of an orbit caused by the equatorial bulge, and gives the formula
for the angle of inclination that yields zero rotation. Other problems are
concerned with the launch azimuth needed to achieve a given angle of incli-
nation and with the location of the highest and lowest latitudes of an orbit.

PROBLEMS

The following figure applies to problems 1 through 8. The radius of Earth
AE is taken to be 3,960 miles.
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1. Derive a formula for finding what fraction of the surface of a sphere of
radius r can be seen from an altitude It above the surface of the sphere.

Solution. In the preceding drawing, we note that triangles ABC and ACD
are similar.

AB AC'
AC AD

AB (AC)2 r-
AD r h

BE = r AB

r2r r h

rh
r h

7-2 ± rh
r ± h

Let A. be the area of the zone with altitude BE. Then

= 27r-r(BE) = 27rr(r ±r

Let A, be the area of Earth. Then
./L = Livr2

A arr
A. 4m-r2 (r 11)

Ii

2(r h)

2. Gemini 10, with astronauts Collins and Young aboard, flew in an orbit
with perigee of 100 miles and apogee of 168 miles. What percent of Earth's
surface was visible from each of these two altitudes ? Assume that Earth
is a sphere with radius of 3,960 miles.

S lution. Substituting h = 100 and r = 3,960 in the derived formula,
A. 100 50
Ac= 2(3,960 -I- 100) 4,060 0.012.

Thus the astronauts were able to observe 1.2 percent of Earth's surface from
the perigee altitude of 100 miles. The problem from the apogee is solved
in a similar manner. In this case h = 168, and

A z 168 84 0.02.A. 2 (3,960 ± 168) 4,128

Therefore 2.0 percent of Earth's surface was visible from the apogee alti-
tude of 168 miles.

3. Gemini 11 achieved an orbit with an apogee of 853 miles, a new altitude
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record for manned flight at that time. What percent of Earth's surface
was visible to astronauts Conrad and Gordon aboard Gemini II from apogee
altitude?

Solution. Because h = 853,

A r 853 853 = 0.0886 = 0.089,A, 2(3,960 ± 85 9,626

The astronauts were able to observe 8.9 percent of Earth's surface from an
altitude of 853 miles.

A-4. Discuss the manner in which the fraction varies with the altitude h.A,
A

Solution. Intuition suggests that as it, increases, the value of shouldA,
vary from zero to 1/2. On the surface of Earth, the fraction is zero. As h
increases, so does the fraction, and yet it must always be less than I/2 ; i.e.,
one cannot hope to view more than a hemisphere at any one time. A little
algebra bears this out.

A,
A, 2(T ± h)

is certainly zero when h = 0. Observe that

A rA,
As h increases, the denominator of the right-hand side decreases, which

Aforces the entire fraction to increase. Furthermore, as h--> 0,' h
Azand consequently approaches -2 (I 0) -=

5. Find what altitude from Earth the astronaut must be to see one-quarter
of Earth's surface at one time.

Solution. Substituting in the equation,

1 Ii
4 2(3,960 -I- h)

4h = 2(3,960 -I- h)

2h = 7,920
h = 3,960.

Therefore the astronaut would have to be 8,960 miles above Earth. The
first astronauts to travel that far from Earth were the three American
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astronauts, Anders, Borman and Lovell, on board Apollo 8, which orbited
the Moon on Christmas Day, 1968.

6. What percent of Earth's surface were the Apollo 8 astronauts able to
see as they passed the Moon, a distance of about 235,000 miles from Earth ?

Solution. Because h = 235,000 miles,
A. 235,000 117,500
A. 2 (3,960 + 235,000) 238,960

0.4917 or 49.2 percent_

7. The lunar altitude of the Command Module on several Apollo flights has
been 69 miles. What fraction of the surface of the Moon can be seen from
this altitude?

Solution. The formula previously derived applies as well to the Moon as to
Earth. Evidently h = 69 and r 1,080.

A. 69 69
2 (1,080 + 69) 2,298 0.030 3.0 percent.

8. What percent of Earth's surface can be "seen" from a synchronous
satellite, whose altitude is 22,300 miles above Earth ?

Solution. Because h = 22,300 miles,

A. 22,300
A, 2 (3,960 + 22,300) 0.425 42.5 percent.

A synchronous satellite can relay messages to about 42.5 percent of Earth's
surface. Thus three such satellites evenly spaced around the Earth over
the Equator could form the basis of a communications network covering
the entire Earth.

9. NASA tracking stations are located near the Equator ; one in Ethiopia
at 40° E longitude, the other near Quito, Ecuador, at 78° W longitude. As-
sume both stations, represented by E and Q in the figure, are on the Equator
and that the radius of Earth is 3,960 miles.

Equator

0*
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a. Find the distance between the two stations on a straight line through
the Earth. The angular distance between the two meridians of longitude is
78° 40° = 118'.

Solution.

To find the distance, it suffices to consider right triangle OCE, for 2CE =.
QE. Hence

QE = 2CE = 2(3,960 mi)(sin 59°)

= (7,920) (0.85717)

= 6,790 mi.

b. Given that the circumference of Earth is 24,900 miles, find the distance
along the surface of Earth between the two tracking stations.

Solution. To find the circumference, 360° or the whole circle was consid-
ered. In this case, however, only 118° are to be considered. Thus the dis-
tance is

118' (24 900 mi) 8,160360°

10_ A satellite in equatorial orbit is observed at the same instant from the
tracking stations in Quito and Ethiopia. The angle of elevation from Quito,
above horizontal, is 5° and from Ethiopia, 10°.

Find the distance of the satellite from Earth at the instant of observation.
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Solution. From the preceding problem, QE = 6,790 miles. Angles OQE
and OEQ each measure 310. Therefore we know that the angles between
QE and the local horizontals at Q and E each equal 59°. Because the angle
of elevation at Q is 5°, angle EQS = 64°. Similarly, angle QES -= 69°.
We apply the law of sines to triangle QSE. (Note that angle OES contains
1000.)

SE 6,790 mi
sin 64° sin 470

SE --- 8,340 mi.

Applying the law of cosines in triangle OSE gives

OS = V(3,960 rr-40 mi )2 2 (3,960 mi

= 9,834 mi.

340 cos 1000)

Thus the distance from Earth PS 9,8 4 mi 3,960 mi = 5,874 miles, or
about 5,870 miles.

11. Two NASA tracking stations are located near the 34.5° parallel of south
latitude, one near Santiago, Chile, at 71° W longitude ; the other near Can-
berra, Australia, at 149' E longitude. Assume that both stations, repre-
sented by C and S in the figure, are at 34.50 S latitude and that the radius
of Earth is 3,960 miles.

71' W

Equator

a. What is the distance between the two stations in a straight line through
Earth ?

Solution.

1 5

Center of Earth

Surface
of Earth
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In the first drawing, angle SOC is 360° (71° ± 149°) = 140°. It is nec-
essary to use the right triangle SOE in the second drawing to find OS. We
note that angle ESO contains 34.50.

Now
OS = (cos 34.50)(3,960 mi)

= (0.82413)(3,960 mi)

= 3,264 mi.

The required distance is SC in the first drawing, but SC 2SP. Hence

SC 2SP 2 (3,264 i) (sin 700)

= (6,528 mi) (0.93969)

= 6,134 or 6,130 mi.

b. Given that the circumference of Earth at the Equator is 24,900 miles,
find the distance between the two stations along the surface of Earth on
the 34.50 9 parallel.

Solution. We use the formula derived in Chapter 8, problem 4, Cp = C, cos
0, where C, and C are the lengths of the parallel of latitude and of the Equa-
tor, respectively.

Then
Cip = (24,9 cos 34.5°)

= (24,900 i) (0.82413) = 20,520 mi.

Because only 140° of the total 360° are to be con idered, the required dis-
tance if-

140 °
20,520 mi 7,980 mi.

360°

c. Find the distance between the two stations along the surface of the
Earth on the great circle passing through the two stations. Note that arcs
CP and SP each contain 90° 34.5° = 55.5'.

P South Pole)
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Solution. Using the law of cosines from spherical trigonometry gives

cos p =- cos c cos s ± sin c sin s cos P

--- (cos 55.50)2 ± (sin 55.5°)2(cos 140')

0.32082 0.52029

-- 0.19947
p 101030' = 6,090'

Converting p to nautical and statute miles, we have

p 6,090 n mi = 7,004 s mi 7,000mi.

12. A satellite passes directly over Santiago, Chile (34018' S, 7100' W), at
a 150-mile altitude on a circular orbit heading due east at 17,350 miles per
hour. How long after passing over Santiago and at what longitude will it
next cross Earth's Equator?

Solution. Because the satellite is observed heading due east, it is known
to be at its apex, or point of greatest latitude (in this case south latitude).
Halfway around its orbit it will be at greatest north latitude. Midway
between these apexes it crosses the Equator. Thus the satellite will cross
the Equator after an angular distance of 90°, or one-quarter of a sidereal
period later. Because an angular distance of 90° at the satellite's altitude

2rr (3,960 ± 150)is equal to = 6,456 statute miles, the time to travel this
4

distance is
6,456 miles (60 minutes per hour) = 22.33 minutes.

17,350 miles per hour
In 22.33 minutes the Earth rotates through 5.57'. Therefore the satellite
crosses Earth's Equator 90° east of Santiago minus 5.57' for Earth's rota-
tion, or 84.43' east of Santiago at 13.430 = 13°26' E longitude.

13. If Earth were a perfect sphere, a satellite in orbit about Earth would
travel in a perfect ellipse with the center of Earth at one focus. Actu-
ally, there are deviations in Earth satellite orbits because of the equatorial
bulge. The bulge causes a rotation in the orbital plane of the major
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axis (often called "line of apsides") of the orbit. (More information on
orbits and the technical language used will be found in the next chapter.)
If 0 denotes the angle of inclination (angle between Earth's equatorial plane
and the orbital plane of the satellite), then the approximate rate of rotation,
in degrees per day, of the major axis is given by

w 4(5 cos2 U 1).

Orbital plane

Equatorial plane

a. Show that there is no rotation effect (0 = 0) if U is roughly 63'. For
this reason the early Soviet satellites were launched in such a way that
their angles of inclination were about 63°. The result was that the perigee
point of such an orbit remained over the U.S.S.R., making data transmission
optimal.

Solution. Solving the equation 4 (5 cos2 0 1) =0 gives cos 9 =
0.4472 or 0 = 63°26'.

b. At what azimuth angle should a satellite at Kennedy Space Center (lati-
tude 28.6° N) be launched so that its angle of inclination is about 63° ?
(The orbital plane intersects the surface of Earth in a great circle. By the
azimuth angle we mean the angle between orbital plane and the plane of
the great circle determined by Kennedy Space Center, the. North Pole, and
the center of Earth.)

Azimuth
angle

Orbital
plane
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Solution. Consider the right spherical triangle ABC sho n m the figure.
By Napier's rules for a right spherical triangle

cos 63° = coS 28.6° sin B.

Now log sin B log cos 63° log cos 28.6° = 9.71356 10, and B 1

the nearest degree. Hence the azimuth angle is 31°.

14. On July 16, 1969, Apollo 11, the first flight for a lunar landing, was
launched from Kennedy Space Center into a temporary parking orbit, prior
to translunar injection. The launch was at an azimuth of 72°. The Ken-
nedy Space Center is located at 28.6' N latitude and 80.6° W longitude.

a. Compute the inclination of the orbital plane to Earth's equatorial plane.

Equator

Orbital plane

Azimuth
angle = 72°

Angle of
inclination

Kennedy
$pace
Center
28.6° N

Solution. To find the angle of inclination to the orbital plane, apply Na-
pier's rules for a right spherical triangle to triangle ABC in the drawing.

cos A sin 72° cos 28.60

log cos A -= log sin 720 + log cos 2 .

= 9.92170 10

A = 33°23' or 33°.

b. Compute the highest and lowest latitudes over which the orbit passed.

Solution. This part can be solved by plane geometry. Because the orbital
plane is inclined 330 to the plane of the Equator, it will intersect Earth's
surface at 32° N latitude. Similarly, the low point of the orbit with refer-
ence to the plane of the Equator will occur at 33° S latitude.
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chutr
CONIC SECTIONS

The mathematics of orbits is one of the most rewarding areas that the
teacher or student interested in space technology can study. The theory
of orbits grows, of course, out of mathematical properties of the conic
sections. The purely mathematical characteristics of the conics have long
been of interest to mathematicians. But when one realizes that the conic
sections describe the paths along which all bodies in the universe have
moved since the beginning of time, these "celestial highways" take on added
interest.

This chapter is organized somewhat differently from the others in the book.
Instead of listing individual problems with only occasionally a sequential
development of a topic, this chapter attempts to build a logical basis for
understanding orbits. Therefore the textual material is longer and the
number of individual problems somewhat smaller than in other chapters.
In some cases, the text develops a concept and then presents as a problem
a similar development or proof that the reader should be able to do. The
material is far from complete, and the interested reader may wish to study
further the laws of Newton and Kepler and the additional light they throw
upon orbit theory. The chapter also deals only with the mathematics of
ideal or simple situations, and does not consider the interaction of three or
more bodies, nor the effect of perturbing forces. Some individual problems
OH perturbing forces are found in other chapters

In contrast to the other chapters, however, this one is open ended. After
the basic formulas of orbital mechanics are understood, the teacher or stu-
dent can find an unlimited number of numerical examples to which these
formulas are applicable. News stories of launches of satellites usually give
the orbital parameters. It is interesting to check the report mathemati-
cally to see whether our mathematical prediction of the behavior of the
satellite agrees with that given in the news report. One can investigate
many kinds of orbital situations involving not only spacecraft but the celes-
tial bodies in the universe. In fact, the study of the information in this
chapter may give many readers their first real glimpse of why bodies
throughout the universe move as they do.

PROBLEMS

An understanding of the conic sections is of vital importance to any indi-
vidual who wishes to understand the basic facts of orbital mechanics. Every
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gravitational orbit of a satellite, planet, comet, meteor, star, galaxy, or
other celestial body is a conic section, with the center of mass of the pri-
mary body located at one focus of the conic. Because the simplest non-
trivial conic section is the circle, we shall begin with a consideration of
circular orbits. Most of us understand from experience Newton's first law
of motion, which states that an object in motion continues in a straight line
unless it is acted upon by some force. If we wish to make an object move
in a circular path rather than in a straight line, we must give it a constant
push toward the center. Thus a central, or centripetal, force is required.
For example, when we tie a string to an object and whirl it in a circle, the
pull of the string is the force which keeps the object in the circular path.

my 2
If we represent the centripetal force by F1, then 111 , where m is the

mass of the object, v is its speed or velocity, and r is the radius of the circle.

When a spacecraft is moving in a circular orbit about any primary body,
the force toward the center is supplied by the force of gravity F2. Accord-

ing to Newton's law of universal gravitation, F2 --Qy--17,74= . In this equa-

tion, G is the constant of universal gravitation, assumed to be constant for
all bodies in the universe ; M and m are the masses of any two bodies ; and r
is the distance between their centers of gravity. The physical situation, if
these two forces are equal, is represented in the -following drawing.

The arrow toward the center represents the force of gravity, the dashed
arrow represents the speed, or tangential velocity, of the spacecraft, and
the curved arrow indicates the circular path. (In rigorous use, velocity is
a vector quantity, because it has both magnitude and direction ; whereas
speed, having magnitude only, is a scalar quantity. The two terms are
often used interchangeably in space literature, and there will be no need for
us to differentiate between them here.) Thus the force of gravity holds
the body in the circular orbit.

nbt)2 GMm
If we set Fi .7=, F2, we obtain r2 . Solving for v gives us

\IQL-'11
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This simple equation enables us to find circular orbital velocities about any
primary body, if M is the mass of the body and r is the radius of the orbit
measured from the center of mass of the body. Because the value of GM
is constant for any primary body, it is convenient to substitute its numerical
value rather than to compute the value of the product for each individual
problem. If the primary body is Earth, then GM = 1.24 X 10'2 cubic miles
per hour per hour. Thus for bodies in circular orbits around Earth,

Earth =
1 24 X 10'2

where, of course, the distance r is expressed in miles. (Note that the value
GM = 9.56 X 104 cubic miles per second per second was used in Chapter 2.)

1. Most manned spacecraft in Earth orbit have been placed at altitudes of
about 100 miles or more because atmospheric drag at altitudes below 100
miles causes a rather rapid deterioration of the orbit Find the velocity
needed for a body to stay in Earth orbit at an altitude of 100 miles.

Solution. Using the given equation,

1.24 X 1012 11.24 X 1012vEarth
3,960 -1- 100

103.V305 = 103 X 17.464

= 17,500 mi/hr.

2. The formula for circular orbital velocity is perfectly general and can be
applied to orbits about any primary body. G is a universal constant. We
need only to change the value of M when we are concerned with another pri-
mary of different mass.

a. The mass of the Moon is approximately 0.012 times the mass M of Earth.
Write a formula for finding circular orbital velocities about the Moon.

Solution. Multiplying the numerator in the previous equation by 0.012,

\II-24 X 0.012 X 10"

11.49 X 10" mi/hr.

h. During the Apollo flights the parking orbit for the Command Module
about the Moon has an altitude of 69 statute miles. The radius of the Moon
is about 1,080 miles. Find the velocity in this orbit.
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\1,080 + 69 1,149
1.49 X 10,° .\'°

102.075 --- 3,600 mi/hr.

3. A synchronous Earth satellite is one which is placed in a west-to-east
orbit over the Equator at such an altitude that its period of revolution about
Earth is 24 hours, the time for one rotation of Earth on its axis. Thus the
orbital motion of the satellite is synchronized with Earth's rotation, and the
satellite appears from Earth to remain stationary over a point on Earth's
surface below. Such communication satellites as Syncom, Early Bird, Intel-
sat, and ATS are in synchronous orbits. Find the altitude for a synchro-
nous Earth satellite.

Solution. The velocity can be found from the equation for circular orbital
velocity. It can also be found by dividing the distance around the orbit by

2the time required ; that is, v 7rr Because the two velocities are equal,

2wr

t
2wr

GM

GMt2
47r 2

t2

47T-2

It is apparent that t = 24 hours. Substituting the other values yields

r
V1.24 X 10'2 X 242

104'V1978.8.64 X 3.142

= 104 - 26,260 mi.

Al Rude = 26,260 3,960 22,300 mi.

2 X 3.14 X 26,260
24

6,8711 mi/hr.

To understand orbits, we must know something of the nature and properties
of the conic sections. They get their name, of course, from the fact that
they may be formed by cutting or sectioning a complete right circular cone
(of two nappes) with a plane. Any plane perpendicular to the axis of the
cone cuts a section that is a circle. Incline the plane a bit, and the section
formed is an ellipse. Tilt the plane still more until it is parallel to a ruling
of the cone and the section is a parabola. Let the plane cut both nappes,
and the section is a hyperbola, a curve with two branches. It is apparent
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CHAPTER 10 CONIC SECTIONS

that closed orbits are circles or ellipses. Open or escape orbits are parabolas
or hyperbolas_

Another way of classifying the conic sections is by means of their eccen-
tricity . If we represent the eccentricity by e, then a conic section is

A circle if e = 0,
An ellipse if 0 < e < 1,
A parabola if e = 1,
A hyperbola if e > 1.

In actual practice, orbits that are exactly circular or parabolic do not exist
because the eccentricity is never exactly equal to 0 or 1.

We shall now derive a group of formulas that are needed in working with
orbits. The reader should carefully study and frequently refer to the fol-
lowing drawings. The formulas derived will be numbered for easy refer-
ence in solving the problems that follow the discussion.

The first drawing shows the ellipse as it is presented in the literature on
analytical geometry. Fi and F2 are the two foci, a is the semimajor axis,
b is the serniminor axis, e is the distance from a focus to the center, and the
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eccentricity e _Tr:. It is apparent that if c = 0, F, coincides with the cen-
ter, and e = 0. Thus a circle is an ellipse with eccentricity equal to zero.
If we move the foci farther from the center, the ellipse becomes stretched
out horizontally and narrower vertically, and the eccentricity increases.

What such changes mean in an orbit can be explained with the second draw-
ing and the two-body formula, or "vis-viva integral,"

V =-- (1)

(Deriving this equation is beyond the scope of this book.) This drawing
shows the primary body located at a focus, while r is the "radial" distance
of the satellite S from the center of its primary. If r has the constant
value a, the ellipse is a circle and the formula reduces to the familiar one
for circular orbital velocity,

(2)

The formula for the velocity of a satellite in a parabolic escape orbit can be
obtained as a limiting case of equation (1) . The following illustration was
obtained by drawing graphs of a conic, expressed in polar coordinates, r

In this case, the particular conic used was r =- 4e
1 6 COS O. 1 - e cos 0-
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The directrix and the prime focus Fo are fixed. The values of e used are,
from right to left (toward the directrix), 1/3, 1/2, 3/4, and 1. For the three
ellipses obtained, the empty foci are at F1, F2, and F3, respectively. We
note that as the eccentricity increases, the empty focus moves to the right,
and the vertex moves toward the direetrix. As we allow the eccentricity
to approach unity, the semimajor axis tends to infinity. When the eccen-
tricity is 1, the ellipse opens to a parabola, and the empty focus F4 is at
infinity. Thus in the ease of a parabolic escape orbit,

_2G

Noting the similarity to equation (2) of the expression for minimum escape
velocity, we write

r
G..41 2 v. ( )

Thus the minimuni, or parabolic, escape velocity can be obtained readily by
multiplying the circular orbital velocity at that radius by N/2. If the
velocity imparted to the satellite is greater than this, the satellite simply
follows a hyperbolic path, and the eccentricity is greater than 1.

Before we discuss elliptical orbits, it will be necessary for us to avoid am-
biguity by clarifying our terminology and mathematical notation. Most
of us know from our reading of space events that in NASA news reports
the point in an orbit nearest the surface of Earth is called perigee, whereas
the farthest point from the surface is called apogee. These points are in-
dicated by C and D, respectively, in the second ellipse drawn on page 122.
In common usage the word is used to refer to either the position of the
point or the distance to the point.

However, usage is not uniform and some references state that the dis-
tances are measured, not from the surl" .ce, but from the center of Earth.
In this book, we shall use distances measured from the center. The dis-
tances from the center to perigee and apogee will be indicated by P and A,
respectively. In most discussions, the context will make this clear. If in
any situation confusion could result, then distances from the surface, if
used, will be called perigee altitude or apogee altitude, whereas distances
from the center will be called perigee radius or apogee radius. Inciaentally,
the mathematics is simpler when distances are measured from the center.

4. Derive a formula for the eccentricity of an elliptical orbit in terms of
A and P.

Solution. The following relationships are apparent from the aforemen-
tioned drawing,

M ±
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(4)

This foi mula provides a quick and easy way of finding the eccentricity of an
elliptical orbit. As a check, we note by inspection that e 0 when A P,
which is the condition for a circular orbit.

Formulas for velocities at apogee and perigee can be obtained easily from
equation (1), the two-body formula. Because e c ea. But, as we
note in the drawing on page 122,

A=c-Fa=ea a=a(1-1-e).

Rearranging this equation,
1 1 -F e

.a A

Obviously at apogee r = A. Let vA = the velocity at apogee. Substitut-
ing in equation (1),

which simplifies to
V A -

VA =

5. Derive a formula for vp, the velocity at perigee.

Solution. Prcceeding as for the velocity at apogee,

and
P=ac=a = a (1 e)

Substituting in 1

which simplifies to

1 1
a

GM
Vp e) (6)

These equations can be written in various other ways, because there are
numerous possible ways of expressing relationships among e, c, a,, A, and
P. The particular form for the formulas reflects personal preference.

118
125



CHAPTER 10 CONIC SECTIONS

6. Show that the velocities at apogee and perigee are inversely proportional
to the distances from the center.

Solution. If we divide equation (5) by equation 6) we obtain

I (1 e)P ja(1 e)P
Al (1 ± e)A a(1 ± e)A

A2 A

Thus the velocity at perigee is inversely proportional to P. etc. That is,
when the orbital distance from the center of the primary body is small, the
velocity at that point is large ; and when the distance is large, the orbital
velocity is small. This result agrees with Kepler's second law of planetarY
motion, which states that a planet moves about the Sun in such a way that
the radius vector from Sun to planet sweeps out equal areas in equal times.

7. Derive a foi tula for the period of an elliptical orbit, given that the
period of an elliptical orbit with semimajor axis a is the same as that for a
circle with radius r = a.

Solution. Following the method used in problem 3, we express the velocity
in terms of the distance around the orbit and the time p required to make
one transit of the orbit,

Also

Then

27Tr
v

= GM

2wr

(2rr )2 GM
2

(27T-r )2 r
2

GM

p 2r\ I

Because the period is the same when r = a, we may write

p = 27r4.j. (7)

8. An Earth satellite is placed in an elliptical orbit with perigee altitude of
100 miles and apogee altitude of 10,000 miles. Use 3,960 for the radius of
Earth.
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a. If injection is at perigee, what must be the injection velocity ?

Solution. We first find the eccentricity as follows ;

P = 3,960 ± 100 = 4,060.
A = 3,960 ± 10,000 = 13,960.

By equation (4),
13,960 - 4,060 9,900

= 103 X 21.749

e 13,960 --I- 4,060

By equation (6
18,020

V1.24 X 1012(1.55 103-V47V P ) =
4,06 0

= 21,800 mi/hr.

b. Find the speed at apogee.

Solution. Using equation (5),

N(1.24 X 1012 (1 - 0.55) -= 11.24 X 10"
13,960 13,960

103-V40 = 10a X 6.32 = 6,320 mi/hr.

c. Find the period in this orbit.

Solution. Using equation (7),

and,

13,960 ± 4 060a 2 9,010

9,0103 \173.1 X 10"
p 27r-V 6.2831.24 X 1012 1.24 X 1012

=-- 6.283N/59 X 10-2 6.283 X 0.768

4.825 = 4.83 hr.

9. During the Apollo flights, the Apollo spacecraft and the third stage
(SIVB) of the Saturn V launch vehicle are placed in a parking orbit 117
miles above Earth. Find the velocity and period in this orbit.

Solution. Because r =, 3,960 + 117 = 4,077 miles, we find from equation
(2),

v. - 4,077
1.24 X 1012 103v 3-04 = 17,400 mi/hr.

From equation (7),

p - 6.2 4,0773
.24 X 1012

6.283 X 0.234 = 1.47 hr.
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10. During the flight of Apollo 11, the SIVB stage was reignited and
burned long enough to place the Apollo spacecraft on a trajectory to the
Moon. At the end of the burn, the spacecraft had a velocity of about
24,230 miles per hour at an altitude of 209 miles. Was the Apollo space-
craft given escape velocity ?

Solution. Using equations (2) and (3),

and

..s/1.24 X 1012
vc 103-V:2V771 17,250 mi/hr4,169

7) = X 17,250 = 1.414 X 17,250 = 24,390 mi/hr.

Thus the velocity imparted was about 160 miles per hour less than escape
velocity, thereby assuring a free return trajectory. That is, if the major
propulsion systems failed, the spacecraft would be going slowly enough to be
pulled around and oriented back toward Earth by lunar gravity, the atti-
tude-ebrtrol system being adequate to make needed course corrections.

11. A spacecraft, as illustrated in the following drawing, is in a circular
orbit 500 miles above Earth. It is desired to transfer the spacecraft to a
lower circular orbit 100 miles above Earth. Compute the velocity changes
needed at A and P to achieve this transfer.

A

Solution. We first find the eccentricity of the transfer orbit, which is, of
course, an ellipse, with A -= 4,460 miles and P = 4,060 miles.

4,460 4,060 400
4,460 ± 4,060 8,520 "47-

We then compare the velocities at A in the circular o bit and the elliptical

128 1- 1



CHAPTER 10 CONIC SECTIONS

orbit to find what change -must be made. Using equations (2 ) and 5),

and

1.24 X 1012 16,700 mi/hr4,460

VA = -\11.244 ,):611)-012
(0.953) 16,300 mi/hr.

Therefore a propulsion engine on board the spacecraft must be fired long
enough so that a retrothrust (opposite to the direction of motion) will slow
down the spacecraft by 400 miles per hour. The spacecraft will then leave
the 500-mile circular orbit and will follow the elliptical transfer orbit, re-
maining in it indefinitely unless add. tional changes in velocity are made.

When the spacecraft reaches the point P, however, we want it to move from
the elliptical orbit into the 100-mile circular orbit. Therefore we must use
equations (2) and (6) to investigate velocity changes at P.

\/1_24 X 1012 17,5 mi/hr.
4,060

1%!

1.24 X 1012 (1.047) = 17,900 mi/hr.
4,060

That is, a retrothrust must reduce velocity again, this time also by about
400 mi/hr.

This method of transferring a spacecraft from one orbit to another is known
as a Hohmann transfer, named after Walter Hohmann, city engineer of
Essen, Germany, who published the method in 1925. There are many
paths that could be used to move the spacecraft from the 500-mile to the
100-mile orbit. But the Hohmann-transfer ellipse, requiring only two
short burns, is the most economical, taking the minimum amount of energy.
Therefore, this method is called a minimum-energy transfer. It has many
applications.

12_ A satellite is placed into a synchronous orbit by a technique involving
a Hohmann-transfer ellipse. We computed in problem 3 that the altitude
of such a satellite is about 22,300 miles, and its orbital speed is about 6,870
miles per hour. The following drawing suggests the details.
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We shall assume that injection is at the perigee point, which we shall place
100 miles above Earth. Then obviously P = 3,960 ÷ 100 .== 4,060, and A =
3,960 ± 22,300 26,260. We wish to find the velocity change needed at A.

Solution.
26,260 4,060

e 26,260 + 4,060
22,200 0 7320 320

A11.24 X
P

10'2(1.732) 103A/529 23,000 /hr.4,060

26,260 (0.26 ) 103-V12.7 -- 3,560 mi/hr.

But the tangential velocity needed at point A is 6,870 miles per hour.
Therefore the velocity of the satellite must be increased in the direction of
Earth's rotation by 6,870 3,560 = 3,310 miles per hour. This extra push
or kick would be provided by the firing of a motor on board the satellite, and
the thrust and firing time must be such as to give the desired increment in
velocity. Such a motor to be fired at apogee is called an apogee motor, and
the thrust it provides is called an apogee kick.

The relative efficiency of using this method is easy to understand. The
placing of a heavy final stage of the launch vehicle at the synchronous alti-
tude and then having a burn to give the entire assembly circular orbital
velocity would take much fuel. Instead we send up to the synchronous
altitude only a relatively light satellite and a small apogee motor. The
numerical values used in this problem are merely illustrative_ If the per-
igee altitude is higher or lower than the one we have assumed, all of the
other numbers are changed.

One more maneuver is needed to make the satellite synchronous. It now
has a period equal to the time of rotation of Earth. However, the satellite
will appear to be stationary over a given point only if it is in equatorial
orbit. Unless corrections were made during launch, the plane of the orbit
will be inclined to the plane of the Equator. One method of solving this
problem is to fire a motor at the precise instant when the satellite crosses
the Equator, adjusting the burning time and direction of thrust so that the
vector sum of the burn velocity and the orbital velocity make the angle of
inclination equal to zero.

13. The first step in lunar orbit injection in the Apollo 11 flight was to place
the spacecraft in an elliptical orbit of 69 by 196 miles, the low point or
perilune (corresponding to perigee for Earth) being on the back side of the
Moon.

a. Compute the velocity needed at perilune to inject the Apollo spacecraft
into this orbit.
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So hi ion. Using the data developed for lunar orbits in problem 2,

P = 1,080 69 = 1,149.
A = 1,080 -I- 196 1,276.

1_,276 1,149 127
e 1,276 ± 1,149 2,425 0.052.

_\/1.49 X 1010 (1.052) = 103-V13.6 = 3,690 mi/hr.
1,140

b. Find the period in this orbit.

Solution. Evidently a = 1/2 (1,276 4- 1,149) = 1,212 and

1,3p = 6.28311 42129 X 101° 6.283 X 0.3456

= 2.17 hr 130 min.

14. The Lunar Module descent orbit insertion during the Apollo 11 mission
began with a Hohmann transfer. The Command and Lunar Modules were
in a circular orbit 69 miles above the Moon. The Lunar Module was de-
tached and its desceni:, engine was fired to reduce veiocity so that it would
enter a 69- by 9-mile lunar orbit. (The perilune altitude of 9 miles was
usually given in news reports as 50,000 feet.) Find the reduction in veloc-
ity needed to achieve this orbit. The Command Module remained in the
69-mile parking orbit.

50,000 ft

Landing

Solution. In this case, the change to the elliptical transfer orbit was made
at apolune (corresponding to apogee for Earth).

A = 1,080 ± 69 = 1,149.
P = 1,080 ± 9 = 1,089.

1,149 1,089 60 0.027.1,149 + 1,089 2,238

vit
.V1.49 X 101° X 0.97

1,149
103v112.6 = 3,550 mi/hr.
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We found in problem 2 that the circular velocity in the 69-mile orbit was
3,600 miles per hour. Thus the reduction in velocity needed, achieved by a
retroburn of the Lunar Module descent engine, was 50 miles per hour. At
perilune altitude of 9 miles, several retroburns and attitude changes were
made, both automatically and manually by the pilot, causing the spacecraft
to descend to the surface. If for any reason the descent from the 9-mile
(50,000-foot) perilune could not be made, the Lunar Module could have
remained indefinitely in the elliptical transfer orbit until a rendezvous and
docking with the Command Module could be made. Thus this maneuver,
which seemed so tricky and dangerous as we watched before our television
sets, was actually a routine Hohmann transfer. The tricky maneuver, re-
quiring some manual control, came when the powered descent to the lunar
surface was made from the 50,000-foot altitude.

15. In Chapter 3, problem 8, we discussed some problems related to manned
exploration of an asteroid. It has been suggested that if an asteroid were
sufficiently small, a source of propulsion could be placed on it to move it into
Earth orbit, where it might be used as an object of study or even as a space
station. We assumed a spherical asteroid with a diameter of 14 miles.
For convenience, we named it A-14. Compute circular and escape velocity
at the surface of 1-14. Could an astronaut run fast enough on A-14 to
put himself into a circular or escape orbit?

Solution- We found in the previous asteroid problem that if M is the mass
of Earth, the mass of A-14 is 3,314 X 10-'2 M. Inserting this multiplier
into equation (2),

t) = .11.24 X 10" X 3,314 X 1
7

and

2

4 100 rv 587 = 24.2 mi/hr7

X 24.2 = 1.414 X 24.2 = 34.2 mi/hr.

A study of track and field records on Earth will show that a world's
champion sprinter cannot run, even Yor a short distance, at the rate of 24.2
miles per hour, the circular orbital speed at the surface of 1-14. Newton's
second law of motion, F = ma, indicates that a man cannot run faster on
the Moon or on an asteroid than on Earth. The forward force F exerted
by his muscles is the same, and his mass m is unchanged by the reduced
gravity. Thus each forward push should give him the same acceleration
as on Earth. Furthermore, his cumbersome spacesuit would interfere with
motion. Thus an astronaut on A-14 could not by his own physical activity
put himself into orbit. He would not need a tether to keep himself from
floating away. For an investigation of other factors related to physical
activity on A-14, see Chapter 3.
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16. We have noted that the velocity of a spacecraft in a circular orbit de-
creases when its distance from the center of the primary body increases.
Therefore it requires less kinetic energy to orbit a spacecraft at a higher
altitude. The question is then often asked why spacecraft are not orbited
at higher altitudes to conserve energy. Given that the gravitational

i

po-
GMristential energy s , show that the sa-ling in kinetic energy is more

than offset by the work required to give the satellite greater height.

Solution. Let p and q be the radii of the orbits, where q > p. Then the
change in potential energy is

GMni 011(m
LIEF

1 1

P

We have noted that the required velocity for a circular orbit of radius r is
given by

GM
V2 .

7"

V 2Because kinetic energy EK = , we multiply the given equation by ---2--
to obtain

Then

That is,

_2t2_2 011

0711m 0Mm
AEK --- I

2 q 2p

1
G.2

1
2

AEr. 2AEK.

Thus the change in potential energy is twice the change in kinetic energy ;
and as a result, more energy is needed to launch at high altitudes than at
lower altitudes.
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